Tensorflow快餐教程(11) - 不懂机器学习就只调API行不行?

简介: Tensorflow高层API

高层封装API

有同学问,我们学习Tensorflow就是想学习一套可以用的套,像编程一样调用就行了,不想学习机器学习的细节,有没有这样的方式?

针对于已经有成熟解决方案的模型,why not呢?
在前面已经快速将CNN, RNN的大致概念和深度学习的简史走马观花过了一遍之后,我们就可以开始尝试使用高层封装的API。

模型 - 训练 - 评估 三条语句搞定

既然高层封装,我们就采用最简单的方式:首先是一个模型,然后就开始训练,最后评估一下效果如何。

我们还是举祖传的MNIST的例子。
核心三条语句,一句模型,一句训练,一句评估:

estimator = tf.estimator.LinearClassifier(feature_columns=[image_column], n_classes=10)

# Train.
estimator.train(input_fn=train_input_fn, steps=2000)

# Evaluate and report metrics.
eval_metrics = estimator.evaluate(input_fn=eval_input_fn, steps=1)

我们首先知道MNIST是把手写图像分成十类,那么就用个线性回归分类器,指定分成10类:

estimator = tf.estimator.LinearClassifier(feature_columns=[image_column], n_classes=10)

训练也是无脑的,指定训练多少步就是了:

estimator.train(input_fn=train_input_fn, steps=2000)

评估也不需要懂啥,给个测试集就是了:

eval_metrics = estimator.evaluate(input_fn=eval_input_fn, steps=1)

给大家一个完整能运行的例子,主要的工作量都在处理输入数据上,真正有功能的就是那三条语句:

import numpy as np
import tensorflow as tf

def get_input_fn(dataset_split, batch_size, capacity=10000, min_after_dequeue=3000):

  def _input_fn():
    images_batch, labels_batch = tf.train.shuffle_batch(
        tensors=[dataset_split.images, dataset_split.labels.astype(np.int32)],
        batch_size=batch_size,
        capacity=capacity,
        min_after_dequeue=min_after_dequeue,
        enqueue_many=True,
        num_threads=4)
    features_map = {'images': images_batch}
    return features_map, labels_batch

  return _input_fn

data = tf.contrib.learn.datasets.mnist.load_mnist()

train_input_fn = get_input_fn(data.train, batch_size=256)
eval_input_fn = get_input_fn(data.validation, batch_size=5000)

# Specify the feature(s) to be used by the estimator.
image_column = tf.contrib.layers.real_valued_column('images', dimension=784)
estimator = tf.estimator.LinearClassifier(feature_columns=[image_column], n_classes=10)

# Train.
estimator.train(input_fn=train_input_fn, steps=2000)

# Evaluate and report metrics.
eval_metrics = estimator.evaluate(input_fn=eval_input_fn, steps=1)
print(eval_metrics)

三步法进阶

现在我们已经学会三步法了。虽然不涉及底层细节,我们还是有很多工具可以做得更好的。

比如我们要自己设计优化方法, 从三条语句变成四条:

optimizer2 = tf.train.FtrlOptimizer(learning_rate=5.0, l2_regularization_strength=1.0)
estimator2 = tf.estimator.LinearClassifier(
    feature_columns=[image_column], n_classes=10, optimizer=optimizer2)

# Train.
estimator2.train(input_fn=train_input_fn, steps=2000)

# Evaluate and report metrics.
eval_metrics2 = estimator2.evaluate(input_fn=eval_input_fn, steps=1)
print(eval_metrics2)

这段代码不是片断,拼接到上面的代码的后面就可以直接运行。

更进一步:支持向量机

默认的虽然通用,但是效果可能不如更专业的更好。比如我们想用前深度学习时代最强大的工具之一 - 支持向量机来进行MNIST识别。我们还是可以用高层API来实现。将LinearClassifier换成KernelLinearClassifier。

optimizer3 = tf.train.FtrlOptimizer(
   learning_rate=50.0, l2_regularization_strength=0.001)

kernel_mapper3 = tf.contrib.kernel_methods.RandomFourierFeatureMapper(
  input_dim=784, output_dim=2000, stddev=5.0, name='rffm')
kernel_mappers3 = {image_column: [kernel_mapper3]}
estimator3 = tf.contrib.kernel_methods.KernelLinearClassifier(
   n_classes=10, optimizer=optimizer3, kernel_mappers=kernel_mappers3)

# Train.
estimator3.fit(input_fn=train_input_fn, steps=2000)

# Evaluate and report metrics.
eval_metrics3 = estimator3.evaluate(input_fn=eval_input_fn, steps=1)
print(eval_metrics3)

我们来比较一下三种方法:

Elapsed time: 80.69186925888062 seconds
{'loss': 0.26811677, 'accuracy': 0.9228, 'global_step': 2000}
Elapsed time: 80.33205699920654 seconds
{'loss': 0.26356304, 'accuracy': 0.9276, 'global_step': 2000}
Elapsed time: 98.87778902053833 seconds
{'loss': 0.10834637, 'accuracy': 0.9668, 'global_step': 2000}

SVM支持向量机力量果然强大,从92%的识别率提升到了96%.

高层深度学习API

准备数据的语句不变,我们再加一种采用深度学习的方式,也是三步:

classifier = tf.estimator.DNNClassifier(
    feature_columns=[image_column],
    hidden_units=[784, 625],
    n_classes=10)

# Train.
classifier.train(
    input_fn=train_input_fn,
    steps=2000)

eval_result = classifier.evaluate(
    input_fn=eval_input_fn, steps=1)

print(eval_result)

打印出来的结果如下:

{'accuracy': 0.9812, 'average_loss': 0.064692736, 'loss': 323.46368, 'global_step': 2000}

识别率达到98%,比支持向量机还要强一些。

Tensorflow的API结构

Tensorflow API

我们从第一讲到第十讲学习的都是Mid-Level API。这一讲讲的是High-Level API。

Tensorflow r1.8 Estimators API的变化

Tensorflow API的变化一向以迅速著称,兼容性也不是很好。
tf.estimator.Estimators的前身是tf.contrib.learn.Estimators。

我们对比一下LinearClassifier在这两个版本的区别:
新版:

estimator = tf.estimator.LinearClassifier(feature_columns=[image_column],
                                          n_classes=10)

# Train.
estimator.train(input_fn=train_input_fn, steps=2000)

# Evaluate and report metrics.
eval_metrics = estimator.evaluate(input_fn=eval_input_fn, steps=1)

旧版:

estimator = tf.contrib.learn.LinearClassifier(feature_columns=[image_column], n_classes=10)

# Train.
estimator.fit(input_fn=train_input_fn, steps=2000)

# Evaluate and report metrics.
eval_metrics = estimator.evaluate(input_fn=eval_input_fn, steps=1)
print(eval_metrics)

主要区别为:

  1. 包名改变了
  2. 新版的训练方法是train,而旧版是fit。
    因为新版本没有提供支持向量机的分类器,我们用的核函数版本的KernelLinearClassifier还是老的包中的,所以还是用的fit来训练。

前情提要

有对前10节感兴趣的,请移步:
Tensorflow快餐教程(1) - 30行代码搞定手写识别:https://yq.aliyun.com/articles/582122
Tensorflow快餐教程(2) - 标量运算:https://yq.aliyun.com/articles/582490
Tensorflow快餐教程(3) - 向量:https://yq.aliyun.com/articles/584202
Tensorflow快餐教程(4) - 矩阵:https://yq.aliyun.com/articles/584526
Tensorflow快餐教程(5) - 范数:https://yq.aliyun.com/articles/584896
Tensorflow快餐教程(6) - 矩阵分解:https://yq.aliyun.com/articles/585599
Tensorflow快餐教程(7) - 梯度下降:https://yq.aliyun.com/articles/587350
Tensorflow快餐教程(8) - 深度学习简史:https://yq.aliyun.com/articles/588920
Tensorflow快餐教程(9) - 卷积:https://yq.aliyun.com/articles/590233
Tensorflow快餐教程(10) - 循环神经网络: https://yq.aliyun.com/articles/591118

目录
相关文章
|
24天前
|
API 微服务
Traefik 微服务 API 网关教程(全)
Traefik 微服务 API 网关教程(全)
|
26天前
|
机器学习/深度学习 算法 API
机器学习入门(五):KNN概述 | K 近邻算法 API,K值选择问题
机器学习入门(五):KNN概述 | K 近邻算法 API,K值选择问题
|
2月前
|
存储 JSON API
实战派教程!Python Web开发中RESTful API的设计哲学与实现技巧,一网打尽!
在数字化时代,Web API成为连接前后端及构建复杂应用的关键。RESTful API因简洁直观而广受欢迎。本文通过实战案例,介绍Python Web开发中的RESTful API设计哲学与技巧,包括使用Flask框架构建一个图书管理系统的API,涵盖资源定义、请求响应设计及实现示例。通过准确使用HTTP状态码、版本控制、错误处理及文档化等技巧,帮助你深入理解RESTful API的设计与实现。希望本文能助力你的API设计之旅。
61 3
|
25天前
|
机器学习/深度学习 算法 数据可视化
【机器学习】决策树------迅速了解其基本思想,Sklearn的决策树API及构建决策树的步骤!!!
【机器学习】决策树------迅速了解其基本思想,Sklearn的决策树API及构建决策树的步骤!!!
|
3月前
|
JavaScript API PHP
一言API搭建教程:搭建属于自己的文言API接口
这篇文章介绍了如何搭建一个属于自己的文言API接口。文章首先介绍了准备工作,包括代码编辑器和两个文件的创建。然后详细说明了如何将代码复制到php文件中并上传至网站根目录。最后给出了一个示例代码来调用文言API接口。整个过程非常简单。
62 1
|
3月前
|
API UED 开发者
如何在Uno Platform中轻松实现流畅动画效果——从基础到优化,全方位打造用户友好的动态交互体验!
【8月更文挑战第31天】在开发跨平台应用时,确保用户界面流畅且具吸引力至关重要。Uno Platform 作为多端统一的开发框架,不仅支持跨系统应用开发,还能通过优化实现流畅动画,增强用户体验。本文探讨了Uno Platform中实现流畅动画的多个方面,包括动画基础、性能优化、实践技巧及问题排查,帮助开发者掌握具体优化策略,提升应用质量与用户满意度。通过合理利用故事板、减少布局复杂性、使用硬件加速等技术,结合异步方法与预设缓存技巧,开发者能够创建美观且流畅的动画效果。
74 0
|
3月前
|
UED 开发工具 iOS开发
Uno Platform大揭秘:如何在你的跨平台应用中,巧妙融入第三方库与服务,一键解锁无限可能,让应用功能飙升,用户体验爆棚!
【8月更文挑战第31天】Uno Platform 让开发者能用同一代码库打造 Windows、iOS、Android、macOS 甚至 Web 的多彩应用。本文介绍如何在 Uno Platform 中集成第三方库和服务,如 Mapbox 或 Google Maps 的 .NET SDK,以增强应用功能并提升用户体验。通过 NuGet 安装所需库,并在 XAML 页面中添加相应控件,即可实现地图等功能。尽管 Uno 平台减少了平台差异,但仍需关注版本兼容性和性能问题,确保应用在多平台上表现一致。掌握正确方法,让跨平台应用更出色。
45 0
|
3月前
|
开发者 算法 虚拟化
惊爆!Uno Platform 调试与性能分析终极攻略,从工具运用到代码优化,带你攻克开发难题成就完美应用
【8月更文挑战第31天】在 Uno Platform 中,调试可通过 Visual Studio 设置断点和逐步执行代码实现,同时浏览器开发者工具有助于 Web 版本调试。性能分析则利用 Visual Studio 的性能分析器检查 CPU 和内存使用情况,还可通过记录时间戳进行简单分析。优化性能涉及代码逻辑优化、资源管理和用户界面简化,综合利用平台提供的工具和技术,确保应用高效稳定运行。
67 0
|
3月前
|
前端开发 开发者 设计模式
揭秘Uno Platform状态管理之道:INotifyPropertyChanged、依赖注入、MVVM大对决,帮你找到最佳策略!
【8月更文挑战第31天】本文对比分析了 Uno Platform 中的关键状态管理策略,包括内置的 INotifyPropertyChanged、依赖注入及 MVVM 框架。INotifyPropertyChanged 方案简单易用,适合小型项目;依赖注入则更灵活,支持状态共享与持久化,适用于复杂场景;MVVM 框架通过分离视图、视图模型和模型,使状态管理更清晰,适合大型项目。开发者可根据项目需求和技术栈选择合适的状态管理方案,以实现高效管理。
40 0
|
3月前
|
SQL Shell API
python Django教程 之 模型(数据库)、自定义Field、数据表更改、QuerySet API
python Django教程 之 模型(数据库)、自定义Field、数据表更改、QuerySet API