ResNet18详细原理(含tensorflow版源码)

简介: ResNet18详细原理(含tensorflow版源码)

ResNet18原理
ResNet18是一个经典的深度卷积神经网络模型,由微软亚洲研究院提出,用于参加2015年的ImageNet图像分类比赛。ResNet18的名称来源于网络中包含的18个卷积层。

ResNet18的基本结构如下:

输入层:接收大小为224x224的RGB图像。
卷积层:共4个卷积层,每个卷积层使用3x3的卷积核和ReLU激活函数,提取图像的局部特征。
残差块:共8个残差块,每个残差块由两个卷积层和一条跳跃连接构成,用于解决深度卷积神经网络中梯度消失和梯度爆炸问题。
全局平均池化层:对特征图进行全局平均池化,将特征图转化为一维
向量。

全连接层:包含一个大小为1000的全连接层,用于分类输出。
输出层:使用softmax激活函数,生成1000个类别的概率分布。
image.png
image.png
image.png
ResNet18的主要特点是引入了残差块(Residual Block)的概念,用于解决深度卷积神经网络中梯度消失和梯度爆炸问题。在残差块中,跳跃连接(Shortcut Connection)可以将输入直接连接到输出,使得网络可以学习到残差信息,从而更好地进行特征提取和处理。

    在训练过程中,ResNet18一般采用基于随机梯度下降(Stochastic Gradient Descent,SGD)的反向传播算法,通过最小化交叉熵损失函数来优化模型参数。在训练过程中,可以使用数据增强、正则化、dropout等技术来提高模型的泛化能力和鲁棒性。

    总的来说,ResNet18是一个非常经典和有效的深度卷积神经网络模型,具有良好的特征提取和分类能力,可以应用于图像分类、目标检测等计算机视觉任务。

ResNet18源码(tensorflow版)


import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers,datasets,models



def main():
    (train_x,train_y),(test_x,test_y) = datasets.cifar10.load_data()

    train_x = train_x.reshape([-1,32,32,3]) / 255.0
    test_x = test_x.reshape([-1,32,32,3]) / 255.0

    inputs = keras.Input((32,32,3))

    output = ResNet18(inputs)

    model = models.Model(inputs,output)

    model.summary()

    model.compile(loss = keras.losses.SparseCategoricalCrossentropy(),
                  optimizer=keras.optimizers.Adam(0.01),
                  metrics=['accuracy'])
    model.fit(train_x,train_y,batch_size=128,epochs=10)

    score = model.evaluate(test_x,test_y)
    print("loss:",score[0])
    print("acc:",score[1])
    pass

def ConvCall(x,filtten,xx,yy,strides = (1,1)):
    x = layers.Conv2D(filtten,(xx,yy),strides=strides,padding='same')(x)
    x = layers.BatchNormalization()(x)
    return x

def ResNetblock(input,filtten,strides = (1,1)):
    x = ConvCall(input,filtten,3,3,strides=strides)
    x = layers.Activation("relu")(x)

    x = ConvCall(x,filtten,3,3,strides=(1,1))
    if strides != (1,1):
        residual = ConvCall(input,filtten,1,1,strides=strides)
    else:
        residual = input

    x = x + residual
    x = layers.Activation("relu")(x)

    return x

def ResNet18(inputs):
    x = ConvCall(inputs, 64, 3, 3, strides=(1, 1))
    x = layers.Activation('relu')(x)

    x = ResNetblock(x, 64, strides=(1, 1))
    x = ResNetblock(x, 64, strides=(1, 1))

    x = ResNetblock(x, 128, strides=(2, 2))
    x = ResNetblock(x, 128, strides=(1, 1))

    x = ResNetblock(x, 256, strides=(2, 2))
    x = ResNetblock(x, 256, strides=(1, 1))

    x = ResNetblock(x, 512, strides=(2, 2))
    x = ResNetblock(x, 512, strides=(1, 1))
    x = layers.GlobalAveragePooling2D()(x)  # 全局平均池化
    output = layers.Dense(10, "softmax")(x)
    return output


if __name__ == '__main__':
    main()

训练10个epoch的效果
image.png
image.png

目录
相关文章
|
7月前
|
机器学习/深度学习 算法 TensorFlow
【Python深度学习】Tensorflow对半环形数据分类、手写数字识别、猫狗识别实战(附源码)
【Python深度学习】Tensorflow对半环形数据分类、手写数字识别、猫狗识别实战(附源码)
132 0
|
7月前
|
机器学习/深度学习 算法 TensorFlow
【Python机器学习】梯度下降法的讲解和求解方程、线性回归实战(Tensorflow、MindSpore平台 附源码)
【Python机器学习】梯度下降法的讲解和求解方程、线性回归实战(Tensorflow、MindSpore平台 附源码)
196 0
|
2月前
|
机器学习/深度学习 PyTorch 算法框架/工具
|
6月前
|
机器学习/深度学习 人工智能 算法
TensorFlow 的基本原理和使用方法
TensorFlow 的基本原理和使用方法
|
7月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
【Python深度学习】Tensorflow+CNN进行人脸识别实战(附源码和数据集)
【Python深度学习】Tensorflow+CNN进行人脸识别实战(附源码和数据集)
727 4
|
7月前
|
文字识别 算法 TensorFlow
【Keras+计算机视觉+Tensorflow】OCR文字识别实战(附源码和数据集 超详细必看)
【Keras+计算机视觉+Tensorflow】OCR文字识别实战(附源码和数据集 超详细必看)
200 2
|
7月前
|
机器学习/深度学习 算法 TensorFlow
【Keras+计算机视觉+Tensorflow】实现基于YOLO和Deep Sort的目标检测与跟踪实战(附源码和数据集)
【Keras+计算机视觉+Tensorflow】实现基于YOLO和Deep Sort的目标检测与跟踪实战(附源码和数据集)
135 1
|
7月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
【Python机器学习】神经网络中全连接层与线性回归的讲解及实战(Tensorflow、MindSpore平台 附源码)
【Python机器学习】神经网络中全连接层与线性回归的讲解及实战(Tensorflow、MindSpore平台 附源码)
188 0
|
7月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
【深度学习】Tensorflow、MindSpore框架介绍及张量算子操作实战(超详细 附源码)
【深度学习】Tensorflow、MindSpore框架介绍及张量算子操作实战(超详细 附源码)
236 0
|
7月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
【Keras+计算机视觉+Tensorflow】DCGAN对抗生成网络在MNIST手写数据集上实战(附源码和数据集 超详细)
【Keras+计算机视觉+Tensorflow】DCGAN对抗生成网络在MNIST手写数据集上实战(附源码和数据集 超详细)
139 0

热门文章

最新文章