用GPU进行TensorFlow计算加速

简介: 小编说:将深度学习应用到实际问题中,一个非常大的问题在于训练深度学习模型需要的计算量太大。为了加速训练过程,本文将介绍如何如何在TensorFlow中使用单个GPU进行计算加速,也将介绍生成TensorFlow会话(tf.Session)时的一些常用参数。
+关注继续查看

小编说:将深度学习应用到实际问题中,一个非常大的问题在于训练深度学习模型需要的计算量太大。为了加速训练过程,本文将介绍如何如何在TensorFlow中使用单个GPU进行计算加速,也将介绍生成TensorFlow会话(tf.Session)时的一些常用参数。通过这些参数可以使调试更加方便而且程序的可扩展性更好。本文选自《TensorFlow:实战Google深度学习框架(第2版)》。


TensorFlow程序可以通过tf.device函数来指定运行每一个操作的设备,这个设备可以是本地的CPU或者GPU,也可以是某一台远程的服务器。但在本文中只关心本地的设备。TensorFlow会给每一个可用的设备一个名称,tf.device函数可以通过设备的名称来指定执行运算的设备。比如CPU在TensorFlow中的名称为/cpu:0。在默认情况下,即使机器有多个CPU,TensorFlow也不会区分它们,所有的CPU都使用/cpu:0作为名称。而一台机器上不同GPU的名称是不同的,第n个GPU在TensorFlow中的名称为/gpu:n。比如第一个GPU的名称为/gpu:0,第二个GPU名称为/gpu:1,以此类推。


TensorFlow提供了一个快捷的方式来查看运行每一个运算的设备。在生成会话时,可以通过设置log_device_placement参数来打印运行每一个运算的设备。以下程序展示了如何使用log_device_placement这个参数。


import tensorflow as tf

a = tf.constant([1.0, 2.0, 3.0], shape=[3], name='a')
b = tf.constant([1.0, 2.0, 3.0], shape=[3], name='b')
c = a + b
# 通过log_device_placement参数来输出运行每一个运算的设备。
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
print sess.run(c)

'''
在没有GPU的机器上运行以上代码可以得到类似以下的输出:
Device mapping: no known devices.

add: (Add): /job:localhost/replica:0/task:0/cpu:0
b: (Const): /job:localhost/replica:0/task:0/cpu:0
a: (Const): /job:localhost/replica:0/task:0/cpu:0
[ 2.  4.  6.]
'''


在以上代码中,TensorFlow程序生成会话时加入了参数log_device_placement=True,所以程序会将运行每一个操作的设备输出到屏幕。于是除了可以看到最后的计算结果,还可以看到类似“add: /job:localhost/replica:0/task:0/cpu:0”这样的输出。这些输出显示了执行每一个运算的设备。比如加法操作add是通过CPU来运行的,因为它的设备名称中包含了/cpu:0。


在配置好GPU环境的TensorFlow中,如果操作没有明确地指定运行设备,那么TensorFlow会优先选择GPU。比如将以上代码在亚马逊(Amazon Web Services, AWS)的 g2.8xlarge实例上运行时,会得到类似以下的运行结果。


Device mapping:
/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: GRID K520, pci bus id: 0000:00:03.0
/job:localhost/replica:0/task:0/gpu:1 -> device: 1, name: GRID K520, pci bus id: 0000:00:04.0
/job:localhost/replica:0/task:0/gpu:2 -> device: 2, name: GRID K520, pci bus id: 0000:00:05.0
/job:localhost/replica:0/task:0/gpu:3 -> device: 3, name: GRID K520, pci bus id: 0000:00:06.0

add: (Add): /job:localhost/replica:0/task:0/gpu:0
b: (Const): /job:localhost/replica:0/task:0/gpu:0
a: (Const): /job:localhost/replica:0/task:0/gpu:0
[ 2.  4.  6.]


从以上输出可以看到在配置好GPU环境的TensorFlow中,TensorFlow会自动优先将运算放置在GPU上。不过,尽管g2.8xlarge实例有4个GPU,在默认情况下,TensorFlow只会将运算优先放到/gpu:0上。于是可以看见在以上程序中,所有的运算都被放在了/gpu:0上。如果需要将某些运算放到不同的GPU或者CPU上,就需要通过tf.device来手工指定。以下程序给出了一个通过tf.device手工指定运行设备的样例。


import tensorflow as tf

# 通过tf.device将运算指定到特定的设备上。
with tf.device('/cpu:0'):
   a = tf.constant([1.0, 2.0, 3.0], shape=[3], name='a')
   b = tf.constant([1.0, 2.0, 3.0], shape=[3], name='b')

with tf.device('/gpu:1'):
    c = a + b

sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
print sess.run(c)

'''
在AWS g2.8xlarge实例上运行上述代码可以得到以下结果:
Device mapping:
/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: GRID K520, pci bus id: 0000:00:03.0
/job:localhost/replica:0/task:0/gpu:1 -> device: 1, name: GRID K520, pci bus id: 0000:00:04.0
/job:localhost/replica:0/task:0/gpu:2 -> device: 2, name: GRID K520, pci bus id: 0000:00:05.0
/job:localhost/replica:0/task:0/gpu:3 -> device: 3, name: GRID K520, pci bus id: 0000:00:06.0

add: (Add): /job:localhost/replica:0/task:0/gpu:1
b: (Const): /job:localhost/replica:0/task:0/cpu:0
a: (Const): /job:localhost/replica:0/task:0/cpu:0
[ 2.  4.  6.]
'''


在以上代码中可以看到生成常量a和b的操作被加载到了CPU上,而加法操作被放到了第二个GPU“/gpu:1”上。在TensorFlow中,不是所有的操作都可以被放在GPU上,如果强行将无法放在GPU上的操作指定到GPU上,那么程序将会报错。以下代码给出了一个报错的样例。


import tensorflow as tf

# 在CPU上运行tf.Variable
a_cpu = tf.Variable(0, name="a_cpu")

with tf.device('/gpu:0'):
    # 将tf.Variable强制放在GPU上。
    a_gpu = tf.Variable(0, name="a_gpu")

sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
sess.run(tf.initialize_all_variables())

'''
运行以上程序将会报出以下错误:
tensorflow.python.framework.errors.InvalidArgumentError: Cannot assign a device to node 'a_gpu': Could not satisfy explicit device specification '/device:GPU:0' because no supported kernel for GPU devices is available.
Colocation Debug Info:
Colocation group had the following types and devices: 
Identity: CPU 
Assign: CPU 
Variable: CPU 
[[Node: a_gpu = Variable[container="", dtype=DT_INT32, shape=[], shared_ name="", _device="/device:GPU:0"]()]]
'''


不同版本的TensorFlow对GPU的支持不一样,如果程序中全部使用强制指定设备的方式会降低程序的可移植性。在TensorFlow的kernel中定义了哪些操作可以跑在GPU上。比如可以在variable_ops.cc程序中找到以下定义。


# define REGISTER_GPU_KERNELS(type)                                       \
    REGISTER_KERNEL_BUILDER(                                                 \
      Name("Variable").Device(DEVICE_GPU).TypeConstraint<type>("dtype"),\
      VariableOp);                                                                 \
   …
TF_CALL_GPU_NUMBER_TYPES(REGISTER_GPU_KERNELS);


在这段定义中可以看到GPU只在部分数据类型上支持tf.Variable操作。如果在TensorFlow代码库中搜索调用这段代码的宏TF_CALL_GPU_NUMBER_TYPES,可以发现在GPU上,tf.Variable操作只支持实数型(float16、float32和double)的参数。而在报错的样例代码中给定的参数是整数型的,所以不支持在GPU上运行。为避免这个问题,TensorFlow在生成会话时可以指定allow_soft_placement参数。当allow_soft_placement参数设置为True时,如果运算无法由GPU执行,那么TensorFlow会自动将它放到CPU上执行。以下代码给出了一个使用allow_soft_placement参数的样例。


import tensorflow as tf

a_cpu = tf.Variable(0, name="a_cpu")
with tf.device('/gpu:0'):
    a_gpu = tf.Variable(0, name="a_gpu")

# 通过allow_soft_placement参数自动将无法放在GPU上的操作放回CPU上。
sess = tf.Session(config=tf.ConfigProto(
    allow_soft_placement=True, log_device_ placement=True))
sess.run(tf.initialize_all_variables())

'''
运行上面这段程序可以得到以下结果:
Device mapping:
/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: GRID K520, pci bus id: 0000:00:03.0
/job:localhost/replica:0/task:0/gpu:1 -> device: 1, name: GRID K520, pci bus id: 0000:00:04.0
/job:localhost/replica:0/task:0/gpu:2 -> device: 2, name: GRID K520, pci bus id: 0000:00:05.0
/job:localhost/replica:0/task:0/gpu:3 -> device: 3, name: GRID K520, pci bus id: 0000:00:06.0
a_gpu: /job:localhost/replica:0/task:0/cpu:0
a_gpu/read: /job:localhost/replica:0/task:0/cpu:0
a_gpu/Assign: /job:localhost/replica:0/task:0/cpu:0
init/NoOp_1: /job:localhost/replica:0/task:0/gpu:0
a_cpu: /job:localhost/replica:0/task:0/cpu:0
a_cpu/read: /job:localhost/replica:0/task:0/cpu:0
a_cpu/Assign: /job:localhost/replica:0/task:0/cpu:0
init/NoOp: /job:localhost/replica:0/task:0/gpu:0
init: /job:localhost/replica:0/task:0/gpu:0
a_gpu/initial_value: /job:localhost/replica:0/task:0/gpu:0
a_cpu/initial_value: /job:localhost/replica:0/task:0/cpu:0

从输出的日志中可以看到在生成变量a_gpu时,无法放到GPU上的运算被自动调整到了CPU上(比如a_gpu和a_gpu/read),而可以被GPU执行的命令(比如a_gpu/initial_value)依旧由GPU执行。
'''


虽然GPU可以加速TensorFlow的计算,但一般来说不会把所有的操作全部放在GPU上。一个比较好的实践是将计算密集型的运算放在GPU上,而把其他操作放到CPU上。GPU是机器中相对独立的资源,将计算放入或者转出GPU都需要额外的时间。而且GPU需要将计算时用到的数据从内存复制到GPU设备上,这也需要额外的时间。TensorFlow可以自动完成这些操作而不需要用户特别处理,但为了提高程序运行的速度,用户也需要尽量将相关的运算放在同一个设备上。

TensorFlow默认会占用设备上的所有GPU以及每个GPU的所有显存。如果在一个TensorFlow程序中只需要使用部分GPU,可以通过设置CUDA_VISIBLE_DEVICES环境变量来控制。以下样例介绍了如何在运行时设置这个环境变量。


# 只使用第二块GPU(GPU编号从0开始)。在demo_code.py中,机器上的第二块GPU的
# 名称变成/gpu:0,不过在运行时所有/gpu:0的运算将被放在第二块GPU上。
CUDA_VISIBLE_DEVICES=1 python demo_code.py
# 只使用第一块和第二块GPU。
CUDA_VISIBLE_DEVICES=0,1 python demo_code.py


TensorFlow也支持在程序中设置环境变量,以下代码展示了如何在程序中设置这些环境变量。


import os

# 只使用第三块GPU。
os.environ["CUDA_VISIBLE_DEVICES"] = "2"


虽然TensorFlow默认会一次性占用一个GPU的所有显存,但是TensorFlow也支持动态分配GPU的显存,使得一块GPU上可以同时运行多个任务。下面给出了TensorFlow动态分配显存的方法。


config = tf.ConfigProto()

# 让TensorFlow按需分配显存。

config.gpu_options.allow_growth = True

# 或者直接按固定的比例分配。以下代码会占用所有可使用GPU的40%显存。
# config.gpu_options.per_process_gpu_memory_fraction = 0.4
session = tf.Session(config=config, ...)


本文选自《TensorFlow:实战Google深度学习框架(第2版)》


da7d3b15ff454e2b30ab7c852358f7d6cc9db25f

相关实践学习
基于阿里云DeepGPU实例,用AI画唯美国风少女
本实验基于阿里云DeepGPU实例,使用aiacctorch加速stable-diffusion-webui,用AI画唯美国风少女,可提升性能至高至原性能的2.6倍。
相关文章
|
2月前
|
机器学习/深度学习 人工智能 芯片
一文详解多模态大模型发展及高频因子计算加速GPU算力 | 英伟达显卡被限,华为如何力挽狂澜?
近年来,全球范围内的芯片禁令不断升级,给许多企业和科研机构带来了很大的困扰,需要在技术层面进行创新和突破。一方面,可以探索使用国产芯片和其他不受限制的芯片来替代被禁用的芯片;另一方面,可以通过优化算法和架构等方法来降低对特定芯片的依赖程度。
|
5月前
|
机器学习/深度学习 存储 弹性计算
阿里云服务器X86计算、ARM计算、GPU/FPGA/ASIC等架构区别及选择参考
在我们选购阿里云服务器的时候,云服务器架构有X86计算、ARM计算、GPU/FPGA/ASIC、弹性裸金属服务器、超级计算集群之分,很多初次接触阿里云服务器的用户并不知道他们之间有何区别,本文来介绍一下阿里云服务器各个架构的特点及适用场景,以供大家了解他们之间的区别,从而对选择哪种架构做一个参考。
771 1
阿里云服务器X86计算、ARM计算、GPU/FPGA/ASIC等架构区别及选择参考
|
5月前
|
弹性计算 虚拟化 异构计算
阿里云GPU服务器V100 GPU计算卡价格表
阿里云GPU服务器V100 GPU计算卡价格表,阿里云GPU服务器租用价格表包括包年包月价格、一个小时收费以及学生GPU服务器租用费用,阿里云GPU计算卡包括NVIDIA V100计算卡、T4计算卡、A10计算卡和A100计算卡,GPU云服务器gn6i可享受3折优惠,阿里云百科分享阿里云GPU服务器租用价格表、GPU一个小时多少钱以及学生GPU服务器收费价格表
195 0
|
5月前
|
机器学习/深度学习 弹性计算 编解码
阿里云ECS服务器ARM计算和GPU/FPGA/ASIC有什么区别?
阿里云ECS服务器ARM计算和GPU/FPGA/ASIC有什么区别?阿里云服务器架构有什么区别?X86计算、ARM计算、GPU/FPGA/ASIC、弹性裸金属服务器、超级计算集群有什么区别?阿里云服务器网分享云服务器ECS架构详细说明
70 1
|
5月前
|
机器学习/深度学习 弹性计算 编解码
阿里云架构X86计算、ARM计算、GPU、裸金属和超级计算集群介绍
阿里云架构X86计算、ARM计算、GPU、裸金属和超级计算集群介绍,阿里云服务器架构有什么区别?X86计算、ARM计算、GPU/FPGA/ASIC、弹性裸金属服务器、超级计算集群有什么区别?阿里云服务器网分享云服务器ECS架构详细说明
145 0
|
6月前
|
弹性计算 异构计算
阿里云gpu云服务器 A10卡 GPU计算型实例 gn7i 价格调整列表
2023年6月6日00:00阿里云官宣完成gpu云服务器 A10卡 GPU计算型实例 gn7i的价格调整,新的价格已于北京时间2023年6月6日00:00生效,生效后您购买的对应ECS产品将按照新价格计费。下面是调整之后新的价格列表。
阿里云gpu云服务器 A10卡 GPU计算型实例 gn7i 价格调整列表
|
7月前
|
机器学习/深度学习 存储 人工智能
GPU 计算和深度学习在药物发现中的转型作用
GPU 计算和深度学习在药物发现中的转型作用
173 0
|
9月前
|
人工智能 弹性计算 自动驾驶
AI训练性能提升30%,阿里云发布GPU计算裸金属实例ebmgn7ex
ChatGPT、AIGC(人工智能生成内容)等技术潮流快速兴起,让普通人也感受到了人工智能技术应用落地对用户体验带来的巨大改变。应用的快速落地,离不开背后基础设施的支撑。人工智能模型的训练场景,往往要求高算力、高吞吐、低延时,可以大大加快训练速度,加速模型迭代。
AI训练性能提升30%,阿里云发布GPU计算裸金属实例ebmgn7ex
|
10月前
|
机器学习/深度学习 编解码 Serverless
|
11月前
|
数据采集 编解码 弹性计算
阿里云GPU服务器计算型gn7r实例ARM架构NVIDIA A16 GPU卡
阿里云GPU服务器计算型gn7r实例是阿里云推出的企业级ARM处理器和GPU的组合云服务器,GPU为NVIDIA A16 GPU,CPU采用3.0 GHz主频的Ampere ® Altra ® Max处理器,以ARM架构为开发Android线上应用和云手机、云手游等业务提供云原生底层资源平台。阿里云百科分享GPU服务器计算型gn7r实例性能评测
1670 0
阿里云GPU服务器计算型gn7r实例ARM架构NVIDIA A16 GPU卡
热门文章
最新文章
相关产品
机器翻译
推荐文章
更多