python的webrtc库实现语音端点检测

本文涉及的产品
语音服务,语音通知 50分钟
简介: python的webrtc库实现语音端点检测 文章源码在 https://github.com/wangshub/python-vad 引言 语音端点检测最早应用于电话传输和检测系统当中,用于通信信道的时间分配,提高传输线路的利用效率.

python的webrtc库实现语音端点检测

文章源码在 https://github.com/wangshub/python-vad

引言

语音端点检测最早应用于电话传输和检测系统当中,用于通信信道的时间分配,提高传输线路的利用效率.端点检测属于语音处理系统的前端操作,在语音检测领域意义重大.
但是目前的语音端点检测,尤其是检测 人声 开始和结束的端点始终是属于技术难点,各家公司始终处于 能判断,但是不敢保证 判别准确性 的阶段.
Screenshot from 2017-05-25 22-42-50.png
现在基于云端语义库的聊天机器人层出不穷,其中最著名的当属amazon的 Alexa/Echo 智能音箱.
timg.jpg

国内如雨后春笋般出现了各种搭载语音聊天的智能音箱(如前几天在知乎上广告的若琪机器人)和各类智能机器人产品.国内语音服务提供商主要面对中文语音服务,由于语音不像图像有分辨率等等较为客观的指标,很多时候凭主观判断,所以较难判断各家语音识别和合成技术的好坏.但是我个人认为,国内的中文语音服务和国外的英文语音服务,在某些方面已经有超越的趋势.
timg (1).jpg

通常搭建机器人聊天系统主要包括以下三个方面:
* 语音转文字(ASR/STT)
* 语义内容(NLU/NLP)
* 文字转语音(TTS)

语音转文字(ASR/STT)

在将语音传给云端API之前,是本地前端的语音采集,这部分主要包括如下几个方面:
* 麦克风降噪
* 声源定位
* 回声消除
* 唤醒词
* 语音端点检测
* 音频格式压缩

python 端点检测

由于实际应用中,单纯依靠能量检测特征检测等方法很难判断人声说话的起始点,所以市面上大多数的语音产品都是使用唤醒词判断语音起始.另外加上声音回路,还可以做语音打断.这样的交互方式可能有些傻,每次必须喊一下 唤醒词 才能继续聊天.这种方式聊多了,个人感觉会嘴巴疼:-O .现在github上有snowboy唤醒词的开源库,大家可以登录snowboy官网训练自己的唤醒词模型.
* Kitt-AI : Snowboy
* Sensory : Sensory

考虑到用唤醒词嘴巴会累,所以大致调研了一下,python拥有丰富的库,直接import就能食用.这种方式容易受强噪声干扰,适合一个人在家玩玩.
* pyaudio: pip install pyaudio 可以从设备节点读取原始音频流数据,音频编码是PCM格式;
* webrtcvad: pip install webrtcvad 检测判断一组语音数据是否为空语音;
当检测到持续时间长度 T1 vad检测都有语音活动,可以判定为语音起始;
当检测到持续时间长度 T2 vad检测都没有有语音活动,可以判定为语音结束;

完整程序代码可以从我的https://github.com/wangshub/python-vad下载
程序很简单,相信看一会儿就明白了

'''
Requirements:
+ pyaudio - `pip install pyaudio`
+ py-webrtcvad - `pip install webrtcvad`
'''
import webrtcvad
import collections
import sys
import signal
import pyaudio

from array import array
from struct import pack
import wave
import time

FORMAT = pyaudio.paInt16
CHANNELS = 1
RATE = 16000
CHUNK_DURATION_MS = 30       # supports 10, 20 and 30 (ms)
PADDING_DURATION_MS = 1500   # 1 sec jugement
CHUNK_SIZE = int(RATE * CHUNK_DURATION_MS / 1000)  # chunk to read
CHUNK_BYTES = CHUNK_SIZE * 2  # 16bit = 2 bytes, PCM
NUM_PADDING_CHUNKS = int(PADDING_DURATION_MS / CHUNK_DURATION_MS)
# NUM_WINDOW_CHUNKS = int(240 / CHUNK_DURATION_MS)
NUM_WINDOW_CHUNKS = int(400 / CHUNK_DURATION_MS)  # 400 ms/ 30ms  ge
NUM_WINDOW_CHUNKS_END = NUM_WINDOW_CHUNKS * 2

START_OFFSET = int(NUM_WINDOW_CHUNKS * CHUNK_DURATION_MS * 0.5 * RATE)

vad = webrtcvad.Vad(1)

pa = pyaudio.PyAudio()
stream = pa.open(format=FORMAT,
                 channels=CHANNELS,
                 rate=RATE,
                 input=True,
                 start=False,
                 # input_device_index=2,
                 frames_per_buffer=CHUNK_SIZE)


got_a_sentence = False
leave = False


def handle_int(sig, chunk):
    global leave, got_a_sentence
    leave = True
    got_a_sentence = True


def record_to_file(path, data, sample_width):
    "Records from the microphone and outputs the resulting data to 'path'"
    # sample_width, data = record()
    data = pack('<' + ('h' * len(data)), *data)
    wf = wave.open(path, 'wb')
    wf.setnchannels(1)
    wf.setsampwidth(sample_width)
    wf.setframerate(RATE)
    wf.writeframes(data)
    wf.close()


def normalize(snd_data):
    "Average the volume out"
    MAXIMUM = 32767  # 16384
    times = float(MAXIMUM) / max(abs(i) for i in snd_data)
    r = array('h')
    for i in snd_data:
        r.append(int(i * times))
    return r

signal.signal(signal.SIGINT, handle_int)

while not leave:
    ring_buffer = collections.deque(maxlen=NUM_PADDING_CHUNKS)
    triggered = False
    voiced_frames = []
    ring_buffer_flags = [0] * NUM_WINDOW_CHUNKS
    ring_buffer_index = 0

    ring_buffer_flags_end = [0] * NUM_WINDOW_CHUNKS_END
    ring_buffer_index_end = 0
    buffer_in = ''
    # WangS
    raw_data = array('h')
    index = 0
    start_point = 0
    StartTime = time.time()
    print("* recording: ")
    stream.start_stream()

    while not got_a_sentence and not leave:
        chunk = stream.read(CHUNK_SIZE)
        # add WangS
        raw_data.extend(array('h', chunk))
        index += CHUNK_SIZE
        TimeUse = time.time() - StartTime

        active = vad.is_speech(chunk, RATE)

        sys.stdout.write('1' if active else '_')
        ring_buffer_flags[ring_buffer_index] = 1 if active else 0
        ring_buffer_index += 1
        ring_buffer_index %= NUM_WINDOW_CHUNKS

        ring_buffer_flags_end[ring_buffer_index_end] = 1 if active else 0
        ring_buffer_index_end += 1
        ring_buffer_index_end %= NUM_WINDOW_CHUNKS_END

        # start point detection
        if not triggered:
            ring_buffer.append(chunk)
            num_voiced = sum(ring_buffer_flags)
            if num_voiced > 0.8 * NUM_WINDOW_CHUNKS:
                sys.stdout.write(' Open ')
                triggered = True
                start_point = index - CHUNK_SIZE * 20  # start point
                # voiced_frames.extend(ring_buffer)
                ring_buffer.clear()
        # end point detection
        else:
            # voiced_frames.append(chunk)
            ring_buffer.append(chunk)
            num_unvoiced = NUM_WINDOW_CHUNKS_END - sum(ring_buffer_flags_end)
            if num_unvoiced > 0.90 * NUM_WINDOW_CHUNKS_END or TimeUse > 10:
                sys.stdout.write(' Close ')
                triggered = False
                got_a_sentence = True

        sys.stdout.flush()

    sys.stdout.write('\n')
    # data = b''.join(voiced_frames)

    stream.stop_stream()
    print("* done recording")
    got_a_sentence = False

    # write to file
    raw_data.reverse()
    for index in range(start_point):
        raw_data.pop()
    raw_data.reverse()
    raw_data = normalize(raw_data)
    record_to_file("recording.wav", raw_data, 2)
    leave = True

stream.close()
原文地址http://www.bieryun.com/2966.html

程序运行方式sudo python vad.py

相关文章
|
21天前
|
XML JSON 数据库
Python的标准库
Python的标准库
161 77
|
2月前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
95 4
数据分析的 10 个最佳 Python 库
|
22天前
|
XML JSON 数据库
Python的标准库
Python的标准库
47 11
|
2月前
|
人工智能 API 开发工具
aisuite:吴恩达发布开源Python库,一个接口调用多个大模型
吴恩达发布的开源Python库aisuite,提供了一个统一的接口来调用多个大型语言模型(LLM)服务。支持包括OpenAI、Anthropic、Azure等在内的11个模型平台,简化了多模型管理和测试的工作,促进了人工智能技术的应用和发展。
125 1
aisuite:吴恩达发布开源Python库,一个接口调用多个大模型
|
22天前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
63 8
|
30天前
|
安全 API 文件存储
Yagmail邮件发送库:如何用Python实现自动化邮件营销?
本文详细介绍了如何使用Yagmail库实现自动化邮件营销。Yagmail是一个简洁强大的Python库,能简化邮件发送流程,支持文本、HTML邮件及附件发送,适用于数字营销场景。文章涵盖了Yagmail的基本使用、高级功能、案例分析及最佳实践,帮助读者轻松上手。
35 4
|
2月前
|
测试技术 Python
Python中的异步编程与`asyncio`库
Python中的异步编程与`asyncio`库
|
3月前
|
Python
pip批量安装Python库 requirement.txt 离线环境无互联网环境下pip安装Python库
pip批量安装Python库 requirement.txt 离线环境无互联网环境下pip安装Python库
177 3
|
7月前
|
开发工具 git Python
安装和使用`libnum`是一个用于数字理论函数的Python库
【6月更文挑战第19天】`libnum`是Python的数字理论函数库。安装可通过`git clone`,进入目录后运行`python setup.py install`,也可用`pip install libnum`。示例:使用`int_to_hex`将十进制数42转换为十六进制字符串&#39;2a&#39;。注意,信息可能已过时,应查最新文档以确保准确性。如遇问题,参考GitHub仓库或寻求社区帮助。
135 1
|
6月前
|
Python
确保你已经安装了`python-barcode`库。如果没有,可以通过pip来安装:
确保你已经安装了`python-barcode`库。如果没有,可以通过pip来安装: