日本科学家的AI读心术,解码脑电波,还原人眼所见

简介: 想象一下,如果电脑可以把你心中所想表现出来会怎样。 听起来感觉太遥远?然而最近,四位来自日本京都大学的科学家的研究成果,让这样的想象离落地更进一步。Shen Guohua、Tomoyasu Horikawa、Kei Majima 和Yukiyasu Kamitani在BioRxiv上发表了他们利用AI来解码人类思维的研究成果。

想象一下,如果电脑可以把你心中所想表现出来会怎样。

听起来感觉太遥远?然而最近,四位来自日本京都大学的科学家的研究成果,让这样的想象离落地更进一步。Shen Guohua、Tomoyasu Horikawa、Kei Majima 和Yukiyasu Kamitani在BioRxiv上发表了他们利用AI来解码人类思维的研究成果。

机器学习以前就曾被用来研究脑部扫描(MRI,即核磁共振)。给人类看一些简单的图像,比如黑白字母、简单的几何图形,AI能根据脑部活动的信号图还原人眼所见的图像。这一研究成果曾发表在著名刊物Neurons上。

df42c1587d764edf1b490859d2b7405d026250ca

还原效果还不错

不过这次,京都的这些科学家们开发了一种新技术,利用人工智能中的深度神经网络(deep neural networks) 来“解码”思想。这种新技术让科学家们能够解码更复杂的分层图像,即拥有多层颜色和结构的照片(比如一只鸟,或一个戴着牛仔帽的人)。看一下动图。左边是人眼看到的图像,右边是机器还原的图像。

4dca3c5f973fa5b08a43ec0e1affd4e869854f0e

有点恐怖= =

“我们一直在研究通过观察人类大脑活动来重建或重现图像的方法。”其中一位科学家Kamitani表示,“以前我们假设图像是由像素或简单的形状组成的,但众所周知,大脑处理视觉信息时会分层次地提取不同层次上复杂度各不相同的的特征或其他信息。”

新的AI研究成果可以让计算机检测物体,而不仅仅是二进制像素。Kamitani说:“这些神经网络构成的AI模型可以用来表示人脑的层次性结构。”

在这项持续10个月的研究中,研究人员给三位受试人员分别展示一段时间的自然图像(比如鸟或人的照片)、抽象几何形状或字母。

e9f9d2559fafd9085a8d098b018d6116df0c1eb6

第一排是受试者所见到的图片,

后面几排是AI根据3位受试者

对这些图片的不同印象生成的还原图。

在一部分测试中,当正在观看25张图像中的一张时,研究人员会测量记录受试人员的大脑活动。在另一部分的测试中,对大脑活动的记录是在之后受试人员回想图像时进行的。

测量完大脑活动之后,计算机把收集到的信息逆向解码(reverse-engineering)并生成受试人员心中所想的图像。

下面展示的流程图由京都大学Kamitani实验室的研究小组制作,并一步一步分解了这种可视化图像是如何被解码生成的。

92bb89a196306ca94a1407b1d2df5c9ec24d72af

下面两张图显示了受试者观看自然图像或者字母的图像时大脑活动的计算机重建结果。

27aee80629a6de95b1382dc878f2af5103981c2f

用DGN技术生成的其他一些自然景观图像的重建结果。

黑框和灰框的图像分别是原图

和用DNN网络基于VC活动数据重建之后的图像,

三张重建的图片分别来自三位受试人员。

5aa344b539f33081f02a1cde70f8fcf24aaac8df

字母序列的所有重建结果

在另一组受试者观看图片后的回想过程中进行的脑电波测量实验上,科学家们又有了新的突破。

Kamitani说:“和以前不一样的是,采用我们的方法可以重建人类在逐渐回忆过程中脑海里出现的那些模糊的影像。”

如下面的图表所示,当试图解码人们回想图像过程中产生的脑信号时,AI系统重建出的结果就没那么好。那是因为,比起自然图像或字母,人类更难完全确切地记住猎豹或鱼的形象。

8460beb9d67ecde87c933a78d01ff8048a9fde2a

一些含复杂形象的图片的重建结果。

右下角的图片作为空白对照,

是根据测试过程中未被展示图片时受试产生的脑信号重建的。

“出现这样的结果是因为,那个时候大脑的被激活的程度变弱了。”Kamitani解释道。

他还提到,随着技术的精确度正在不断提高,这一研究成果潜在的应用前景无可限量。

人们可以简单地通过想象来绘制图片或进行艺术创作;你的梦想可以被计算机画出来;可以通过形象化精神病患者的幻觉帮助改善对他们的照顾;而脑机接口可能有一天会实现人与人之间进行想法或脑海中的图像的直接交流,而不再限于语言。

虽然电脑读心这种事现在听起来可能来自使用脑电波交流的三体星人,但这些日本研究人员在这一联系大脑与计算设备的前沿研究中并不是孤军奋战。

比如,前GoogleX员工 Mary Lou Jepsen致力于在十年内打造一顶可以实现心灵感应的帽子,而企业家Bryan Johnson正在尝试构建可以植入大脑以改善神经功能的计算机芯片。更不用说Elon Musk的脑机接口公司Neuralink


原文发布时间为:2018-03-22

本文作者:文摘菌

本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“大数据文摘”微信公众号

相关文章
|
7月前
|
数据采集 人工智能 自然语言处理
AI邂逅青年科学家,大模型化身科研“搭子”
2025年6月30日,首届魔搭开发者大会在北京举办,涵盖前沿模型、MCP、Agent等七大论坛。科研智能主题论坛汇聚多领域科学家,探讨AI与科研融合的未来方向。会上展示了AI在药物发现、生物计算、气候变化、历史文献处理等多个领域的创新应用,标志着AI for Science从工具辅助向智能体驱动的范式跃迁。阿里云通过“高校用云”计划推动科研智能化,助力全球科研创新。
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
原来AI也能“读心术”?——聊聊AI在心理学研究中的那些突破
原来AI也能“读心术”?——聊聊AI在心理学研究中的那些突破
341 1
|
11月前
|
人工智能
MIT 76页深度报告:AI加速创新马太效应,科学家产出分化加剧!缺乏判断力将被淘汰
近日,麻省理工学院(MIT)发布了一份76页的深度研究报告,探讨AI对科学发现和创新的影响。研究对象为1018名美国科学家,结果显示AI使新材料发现增加44%,专利申请增长39%,产品创新提升17%。然而,AI对高能力科学家的产出提升更显著,加剧了科学家间的分化。AI还改变了科学家的工作内容,减少了创意构思时间,增加了评估任务,导致工作满意度下降,但科学家对AI的信心增强。报告全面分析了AI带来的机遇与挑战。论文地址:https://conference.nber.org/conf_papers/f210475.pdf
438 14
|
人工智能
AI科学家太多,谁靠谱一试便知!普林斯顿新基准CORE-Bench:最强模型仅有21%准确率
【10月更文挑战第21天】普林斯顿大学研究人员提出了CORE-Bench,一个基于计算可重复性的AI代理基准,涵盖计算机科学、社会科学和医学领域的270个任务。该基准旨在评估AI代理在科学研究中的准确性,具有多样性、难度级别和现实相关性等特点,有助于推动AI代理的发展并提高计算可重复性。
244 4
|
人工智能 自然语言处理
召唤100多位学者打分,斯坦福新研究:AI科学家创新确实强
【10月更文挑战第6天】斯坦福大学最新研究评估了大型语言模型(LLMs)在生成新颖研究想法方面的能力,通过100多位NLP专家盲评LLMs与人类研究人员提出的想法。结果显示,LLMs在新颖性方面超越人类(p < 0.05),但在可行性上略逊一筹。研究揭示了LLMs作为科研工具的潜力与挑战,并提出了进一步验证其实际效果的设计。论文详见:https://arxiv.org/abs/2409.04109。
190 6
|
人工智能 数据处理
Nature:AI让抄袭问题更加复杂,科学家该如何应对?
【9月更文挑战第16天】《自然》杂志一篇文章指出,AI在科研领域的应用日益增长,带来了加速数据处理、提升计算效率等益处,同时也引发了对科学标准、数据偏见及研究诚信的挑战。一项针对1600多名研究人员的调查显示,超半数认为未来十年AI将成为其研究领域不可或缺的工具。AI能够显著提升科研效率,但也可能增加对模式识别的依赖,加剧数据偏见,并引发研究不可重复性等问题。尤其是大型语言模型如ChatGPT,虽有助于改进论文语法和翻译,但也可能传播错误信息。此外,部分科学家面临计算资源和高质量数据不足等使用障碍。
207 3
|
机器学习/深度学习 存储 人工智能
2024年诺贝尔奖:AI科学家的辉煌时刻 | AI大咖说
在今年的诺贝尔物理学奖和化学奖颁奖典礼上,AI科学家分别摘得了这两项殊荣,这无疑为AI技术的发展和应用注入了新的动力【10月更文挑战第5天】
436 0
|
人工智能 计算机视觉
CVPR 2024:跳舞时飞扬的裙摆,AI也能高度还原了,南洋理工提出动态人体渲染新范式
【5月更文挑战第6天】南洋理工大学研究团队在CVPR 2024会议上提出SurMo,一种动态人体渲染新方法,能高度还原视频中的人物动作和细节,如飞扬的裙摆。SurMo通过4D运动建模,结合表面运动编码、物理运动解码和4D外观解码,实现动态图像的精确合成。尽管面临复杂动作捕捉和计算资源需求的挑战,SurMo在动态人体渲染任务上表现出色,展现了表面基运动三角平面的强大表达能力。[论文链接](https://arxiv.org/pdf/2404.01225.pdf)
357 1
|
4月前
|
消息中间件 人工智能 安全
云原生进化论:加速构建 AI 应用
本文将和大家分享过去一年在支持企业构建 AI 应用过程的一些实践和思考。
1118 51
|
4月前
|
人工智能 运维 Kubernetes
Serverless 应用引擎 SAE:为传统应用托底,为 AI 创新加速
在容器技术持续演进与 AI 全面爆发的当下,企业既要稳健托管传统业务,又要高效落地 AI 创新,如何在复杂的基础设施与频繁的版本变化中保持敏捷、稳定与低成本,成了所有技术团队的共同挑战。阿里云 Serverless 应用引擎(SAE)正是为应对这一时代挑战而生的破局者,SAE 以“免运维、强稳定、极致降本”为核心,通过一站式的应用级托管能力,同时支撑传统应用与 AI 应用,让企业把更多精力投入到业务创新。
608 30