Nature:AI让抄袭问题更加复杂,科学家该如何应对?

简介: 【9月更文挑战第16天】《自然》杂志一篇文章指出,AI在科研领域的应用日益增长,带来了加速数据处理、提升计算效率等益处,同时也引发了对科学标准、数据偏见及研究诚信的挑战。一项针对1600多名研究人员的调查显示,超半数认为未来十年AI将成为其研究领域不可或缺的工具。AI能够显著提升科研效率,但也可能增加对模式识别的依赖,加剧数据偏见,并引发研究不可重复性等问题。尤其是大型语言模型如ChatGPT,虽有助于改进论文语法和翻译,但也可能传播错误信息。此外,部分科学家面临计算资源和高质量数据不足等使用障碍。

根据《自然》杂志的一篇文章,人工智能(AI)在科学研究中的应用正在迅速增加,为科学家提供了许多好处,如加快数据处理速度、提高计算效率和节省时间和金钱。然而,AI也带来了一些挑战,包括对现有科学标准的挑战、对数据偏见的潜在加剧以及对研究诚信的威胁。

该文章基于对全球超过1600名研究人员的调查结果,发现超过一半的受访者认为AI工具在未来十年内将对他们的研究领域变得“非常重要”或“必不可少”。然而,科学家们也表达了对AI如何改变科学研究方式的强烈担忧。

调查结果显示,AI工具可以提供更快的数据处理方式,加速以前无法完成的计算,并节省科学家的时间和金钱。例如,一位计算生物学家表示,AI使她在回答生物学问题方面取得了进展,而这些问题以前是无法解决的。

然而,科学家们也担心AI对科学的潜在负面影响。超过60%的受访者表示,AI工具可能导致对模式识别的依赖增加,而缺乏对底层机制的理解。此外,超过50%的受访者担心AI工具可能会加剧数据中的偏见或歧视,使欺诈更容易,并导致不可重复的研究。

调查还发现,大型语言模型(如ChatGPT)是研究人员最常提到的AI工具之一,但也是他们最关心的AI工具之一。超过60%的受访者担心这些工具会传播错误信息,使抄袭更容易,并在研究论文中引入错误或不准确的信息。

尽管存在这些担忧,但研究人员也看到了AI的潜力,特别是在帮助非英语母语的研究人员改进论文的语法和风格,或总结和翻译其他工作方面。一位材料科学家表示,学术界可以展示如何以有益的方式使用这些工具。

然而,调查还发现,一些科学家在使用AI方面存在障碍,包括缺乏计算资源、资金和高质量的数据。此外,一些科学家担心商业公司在AI工具的开发和使用方面占据主导地位。

论文地址:https://www.nature.com/articles/d41586-023-02980-0

目录
相关文章
|
3月前
|
数据采集 人工智能 自然语言处理
AI邂逅青年科学家,大模型化身科研“搭子”
2025年6月30日,首届魔搭开发者大会在北京举办,涵盖前沿模型、MCP、Agent等七大论坛。科研智能主题论坛汇聚多领域科学家,探讨AI与科研融合的未来方向。会上展示了AI在药物发现、生物计算、气候变化、历史文献处理等多个领域的创新应用,标志着AI for Science从工具辅助向智能体驱动的范式跃迁。阿里云通过“高校用云”计划推动科研智能化,助力全球科研创新。
|
9月前
|
机器学习/深度学习 人工智能 编解码
ByteDance Research登Nature子刊:AI+冷冻电镜,揭示蛋白质动态
在生物医学领域,蛋白质的结构与功能研究至关重要。ByteDance Research团队开发的CryoSTAR软件,结合AI与冷冻电镜技术,通过深度学习模型、结构先验和异质性重构算法,成功解析了蛋白质的动态行为,尤其在处理结构异质性方面表现出色。该软件已在多个蛋白质体系中取得显著成果,如TRPV1通道蛋白的动态变化研究,为理解蛋白质功能及疾病机制提供了新思路。论文链接:https://www.nature.com/articles/s41592-024-02486-1
278 26
|
9月前
|
人工智能 自然语言处理 算法
谷歌DeepMind研究再登Nature封面,隐形水印让AI无所遁形
近日,谷歌DeepMind团队在《自然》期刊上发表了一项名为SynthID-Text的研究成果。该方法通过引入隐形水印,为大型语言模型(LLM)生成的文本添加统计签名,从而实现AI生成文本的准确识别和追踪。SynthID-Text采用独特的Tournament采样算法,在保持文本质量的同时嵌入水印,显著提高了水印检测率。实验结果显示,该方法在多个LLM中表现出色,具有广泛的应用潜力。论文地址:https://www.nature.com/articles/s41586-024-08025-4。
288 26
|
9月前
|
机器学习/深度学习 人工智能 搜索推荐
哈佛推出全新类ChatGPT癌症诊断AI,登上Nature!准确率高达96%
哈佛大学研究团队开发的新型AI模型CHIEF,在《自然》期刊发表,癌症诊断准确率达96%。CHIEF基于深度学习,能自动识别、分类癌症并预测生存期,具高准确性、多任务能力和泛化性。它结合病理图像与基因组学等数据,显著提升诊断效率和个性化治疗水平,有望改善医疗资源不平等。但数据隐私和临床效果验证仍是挑战。论文见:https://www.nature.com/articles/s41586-024-07894-z
327 101
|
12月前
|
机器学习/深度学习 人工智能
打开AI黑匣子,三段式AI用于化学研究,优化分子同时产生新化学知识,登Nature
【10月更文挑战第11天】《自然》杂志发表了一项突破性的化学研究,介绍了一种名为“Closed-loop transfer”的AI技术。该技术通过数据生成、模型训练和实验验证三个阶段,不仅优化了分子结构,提高了光稳定性等性质,还发现了新的化学现象,为化学研究提供了新思路。此技术的应用加速了新材料的开发,展示了AI在解决复杂科学问题上的巨大潜力。
193 1
|
8月前
|
机器学习/深度学习 人工智能 算法
ProtGPS:MIT再造生命科学新基建!蛋白质AI一键预测定位+设计新序列,登Nature子刊
ProtGPS 是麻省理工学院和怀特黑德研究所联合开发的蛋白质语言模型,能够预测蛋白质在细胞内的亚细胞定位,并设计具有特定亚细胞定位的新型蛋白质。
620 17
ProtGPS:MIT再造生命科学新基建!蛋白质AI一键预测定位+设计新序列,登Nature子刊
|
7月前
|
人工智能
MIT 76页深度报告:AI加速创新马太效应,科学家产出分化加剧!缺乏判断力将被淘汰
近日,麻省理工学院(MIT)发布了一份76页的深度研究报告,探讨AI对科学发现和创新的影响。研究对象为1018名美国科学家,结果显示AI使新材料发现增加44%,专利申请增长39%,产品创新提升17%。然而,AI对高能力科学家的产出提升更显著,加剧了科学家间的分化。AI还改变了科学家的工作内容,减少了创意构思时间,增加了评估任务,导致工作满意度下降,但科学家对AI的信心增强。报告全面分析了AI带来的机遇与挑战。论文地址:https://conference.nber.org/conf_papers/f210475.pdf
264 14
|
9月前
|
机器学习/深度学习 人工智能 算法
Nature:AI也许可以拥有常识,但不是现在
人工智能(AI)的快速发展引发了关于其是否能拥有常识的讨论。尽管AI在特定任务上取得进展,但目前仍缺乏真正的常识理解。常识涉及对物理世界、社会规范和文化背景的理解,难以通过数据和算法完全捕捉。研究人员正通过大规模语言模型和强化学习等方法提升AI的常识能力,但仍面临显著局限性,如对物理世界的直观理解不足、社会文化背景理解欠缺以及常识能力的通用性差等问题。未来,多模态学习和与人类交互有望增强AI的常识能力。
184 20
|
8月前
|
机器学习/深度学习 存储 人工智能
预定下一个诺奖级AI?谷歌量子纠错AlphaQubit登Nature,10万次模拟实验创新里程碑
谷歌的量子纠错算法AlphaQubit近日登上《自然》杂志,被誉为量子计算纠错领域的重大突破。量子比特易受环境噪声干扰,导致计算错误,而AlphaQubit通过神经网络学习噪声模式,显著提升纠错准确性。实验结果显示,它在Sycamore处理器和Pauli+模拟器上表现优异,优于现有解码算法。尽管面临资源需求高等挑战,AlphaQubit为实用化量子计算带来新希望,并可能推动其他领域创新。论文详见:https://www.nature.com/articles/s41586-024-08148-8
172 5
|
9月前
|
机器学习/深度学习 人工智能 测试技术
登上Nature的AI芯片设计屡遭质疑,谷歌发文反击,Jeff Dean:质疑者连预训练都没做
2020年,谷歌的AlphaChip在Nature上发表并开源,其深度强化学习方法能生成超越人类水平的芯片布局,引发AI在芯片设计领域的研究热潮。然而,ISPD 2023的一篇论文对其性能提出质疑,指出未按Nature论文方法运行、计算资源不足等问题。谷歌DeepMind团队回应,强调AlphaChip已在多代TPU和Alphabet芯片中成功应用,并批驳ISPD论文的主要错误。此外,针对Igor Markov的“元分析”和无根据猜测,谷歌提供了详细的时间线和非机密部署情况,澄清事实并重申AlphaChip的开放性和透明度。
159 13

热门文章

最新文章