Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring.
解题思路
网上有一种思路是说先得到输入字符串的反转字符串,然后用动态规划得到这两个字符串的最长子串即可,但是实际上这种方式有问题。例如,对于输入“abcdefdcba”,它会得到一个错误的回文子串“abcd”。
一种正确的思路是,用一个二维数组记录每两个下标之间是否为回文子串。下标i从字符串最后一个结点开始向前移动,下标j从i开始向后移动,如果下标i和j所指向的字符相等, 而且j-i<=2
或者[i+1][j-1]
之间的子串为回文子串,则[i][j]
之间的子串为回文子串。
实现代码
一种存在问题的代码:
const int LEN = 1001;
int c[LEN][LEN];
class Solution {
public:
string longestPalindrome(string s)
{
memset(c, 0, sizeof(c));
string s2 = "";
int i = s.size() - 1;
while (i >= 0)
{
s2 += s[i--];
}
int maxLen = 0;
int maxI = 0;
for (i = 1; i <= s.size(); i++)
{
for (int j = 1; j <= s2.size(); j++)
{
if (s[i-1] == s2[j-1])
{
c[i][j] = c[i-1][j-1] + 1;
if (c[i][j] > maxLen)
{
maxLen = c[i][j];
maxI = i - 1;
}
}
}
}
return s.substr(maxI - maxLen + 1, maxLen);
}
};
正确代码(C++):
// Runtime: 260 ms
const int LEN = 1000;
bool c[LEN][LEN];
class Solution {
public:
string longestPalindrome(string s)
{
memset(c, 0, sizeof(c));
int maxLen = 0;
string temp;
for (int i = s.size() - 1; i >= 0; i--)
{
for (int j = i; j < s.size(); j++)
{
if (s[i] == s[j] && (j - i <= 2 || c[i+1][j-1]))
{
c[i][j] = true;
if (j - i + 1 > maxLen)
{
maxLen = j - i + 1;
temp = s.substr(i, j - i + 1);
}
}
}
}
return temp;
}
};
Java:
// Runtime: 460 ms
public class Solution {
public String longestPalindrome(String s) {
boolean b[][] = new boolean[s.length()][s.length()];
int maxLen = 0;
String temp = "";
for (int i = s.length() - 1; i >= 0; i--){
for (int j = i; j < s.length(); j++){
if (s.charAt(i) == s.charAt(j) && (j - i <= 2 || b[i+1][j-1])){
b[i][j] = true;
if (j - i + 1 > maxLen){
maxLen = j - i + 1;
temp = s.substring(i, j + 1);
}
}
}
}
return temp;
}
}
Python版本如下,但是写出来超时了,暂时没有找到其他好办法,请各位指教。
class Solution:
# @param {string} s
# @return {string}
def longestPalindrome(self, s):
b = [[False] * len(s) for i in range(len(s))]
result = ''
maxLen = 0
for i in range(len(s), 0, -1):
for j in range(i, len(s)):
if s[i] == s[j] and (j - i <= 2 or b[i+1][j-1]):
b[i][j] = True
if j - i + 1 > maxLen:
maxLen = j - i + 1
result = s[i:j+1]
return result