MLlib1.6指南笔记

本文涉及的产品
注册配置 MSE Nacos/ZooKeeper,118元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
云原生网关 MSE Higress,422元/月
简介:

MLlib1.6指南笔记

http://spark.apache.org/docs/latest/mllib-guide.html

  • spark.mllib RDD之上的原始API
  • spark.ml ML管道结构 DataFrames之上的高级API

1. spark.mllib:数据类型、算法及工具

cd /Users/erichan/garden/spark-1.6.0-bin-hadoop2.6/bin
./spark-shell --master local --driver-memory 6g

1.1 数据类型

1 局部向量(Local vector)

  • 密集向量(dense)double数组
  • 稀疏向量(sparse)两个平行数组:索引、值
Vector dv = Vectors.dense(1.0, 0.0, 3.0);
Vector sv = Vectors.sparse(3, new int[] {0, 2}, new double[] {1.0, 3.0});

2 标记点(Labeled point)

用于有监督学习算法(回归、分类)的局部向量。

LabeledPoint pos = new LabeledPoint(1.0, Vectors.dense(1.0, 0.0, 3.0));
LabeledPoint neg = new LabeledPoint(0.0, Vectors.sparse(3, new int[] {0, 2}, new double[] {1.0, 3.0}));

LIBSVM格式

label index1:value1 index2:value2 ...
JavaRDD<LabeledPoint> examples =
  MLUtils.loadLibSVMFile(jsc.sc(), "data/mllib/sample_libsvm_data.txt").toJavaRDD();

3 局部矩阵(Local matrix)

  • 密集矩阵(DenseMatrix)一维数组 列优先
  • 稀疏矩阵(SparseMatrix)
Matrix dm = Matrices.dense(3, 2, new double[] {1.0, 3.0, 5.0, 2.0, 4.0, 6.0});
Matrix sm = Matrices.sparse(3, 2, new int[] {0, 1, 3}, new int[] {0, 2, 1}, new double[] {9, 6, 8});

4 分布式矩阵(Distributed matrix)

行矩阵(RowMatrix) 每行是一个局部向量

JavaRDD<Vector> rows = ... //局部向量 JavaRDD
RowMatrix mat = new RowMatrix(rows.rdd());

long m = mat.numRows();
long n = mat.numCols();

// QR分解
QRDecomposition<RowMatrix, Matrix> result = mat.tallSkinnyQR(true);

索引行矩阵(IndexedRowMatrix)每行是一个长整型和一个局部向量

JavaRDD<IndexedRow> rows = ...
IndexedRowMatrix mat = new IndexedRowMatrix(rows.rdd());

long m = mat.numRows();
long n = mat.numCols();

// 去掉行索引 成为行矩阵
RowMatrix rowMat = mat.toRowMatrix();

坐标矩阵(CoordinateMatrix) 行 列 值

JavaRDD<MatrixEntry> entries = ...
CoordinateMatrix mat = new CoordinateMatrix(entries.rdd());
long m = mat.numRows();
long n = mat.numCols();
// Convert it to an IndexRowMatrix whose rows are sparse vectors.
IndexedRowMatrix indexedRowMatrix = mat.toIndexedRowMatrix();

分块矩阵(BlockMatrix) 索引元组 子矩阵

JavaRDD<MatrixEntry> entries = ... // a JavaRDD of (i, j, v) Matrix Entries
// Create a CoordinateMatrix from a JavaRDD<MatrixEntry>.
CoordinateMatrix coordMat = new CoordinateMatrix(entries.rdd());
// Transform the CoordinateMatrix to a BlockMatrix
BlockMatrix matA = coordMat.toBlockMatrix().cache();

// Validate whether the BlockMatrix is set up properly. Throws an Exception when it is not valid.
// Nothing happens if it is valid.
matA.validate();

// Calculate A^T A.
BlockMatrix ata = matA.transpose().multiply(matA);

1.2 统计

1 摘要统计

JavaRDD<Vector> mat = ...
MultivariateStatisticalSummary summary = Statistics.colStats(mat.rdd());
System.out.println(summary.mean());
System.out.println(summary.variance());
System.out.println(summary.numNonzeros());

2 相关统计

JavaSparkContext jsc = ...

JavaDoubleRDD seriesX = ... // a series
JavaDoubleRDD seriesY = ... // must have the same number of partitions and cardinality as seriesX

//皮尔逊相关系数:pearson
//斯皮尔曼等级相关系数:spearman
Double correlation = Statistics.corr(seriesX.srdd(), seriesY.srdd(), "pearson");

JavaRDD<Vector> data = ... // note that each Vector is a row and not a column

// calculate the correlation matrix using Pearson's method. Use "spearman" for Spearman's method.
// If a method is not specified, Pearson's method will be used by default.
Matrix correlMatrix = Statistics.corr(data.rdd(), "pearson");

3 分层抽样

JavaSparkContext jsc = ...

JavaPairRDD<K, V> data = ... // an RDD of any key value pairs
Map<K, Object> fractions = ... // specify the exact fraction desired from each key

// Get an exact sample from each stratum
JavaPairRDD<K, V> approxSample = data.sampleByKey(false, fractions);
JavaPairRDD<K, V> exactSample = data.sampleByKeyExact(false, fractions);

4 假设检定

皮尔森卡方检定

JavaSparkContext jsc = ...

Vector vec = ... // a vector composed of the frequencies of events
// compute the goodness of fit. If a second vector to test against is not supplied as a parameter,
// the test runs against a uniform distribution.  
ChiSqTestResult goodnessOfFitTestResult = Statistics.chiSqTest(vec);
// summary of the test including the p-value, degrees of freedom, test statistic, the method used,
// and the null hypothesis.
System.out.println(goodnessOfFitTestResult);

Matrix mat = ... // a contingency matrix
// conduct Pearson's independence test on the input contingency matrix
ChiSqTestResult independenceTestResult = Statistics.chiSqTest(mat);
// summary of the test including the p-value, degrees of freedom...
System.out.println(independenceTestResult);

JavaRDD<LabeledPoint> obs = ... // an RDD of labeled points
// The contingency table is constructed from the raw (feature, label) pairs and used to conduct
// the independence test. Returns an array containing the ChiSquaredTestResult for every feature
// against the label.
ChiSqTestResult[] featureTestResults = Statistics.chiSqTest(obs.rdd());
int i = 1;
for (ChiSqTestResult result : featureTestResults) {
    System.out.println("Column " + i + ":");
    System.out.println(result); // summary of the test
    i++;
}

1-sample, 2-sided Kolmogorov-Smirnov

JavaSparkContext jsc = ...
JavaDoubleRDD data = jsc.parallelizeDoubles(Arrays.asList(0.2, 1.0, ...));
KolmogorovSmirnovTestResult testResult = Statistics.kolmogorovSmirnovTest(data, "norm", 0.0, 1.0);
// summary of the test including the p-value, test statistic,
// and null hypothesis
// if our p-value indicates significance, we can reject the null hypothesis
System.out.println(testResult);

streaming significance testing

5 随机数生成

JavaSparkContext jsc = ...

//均匀分布 uniform
//标准正态分布 standard normal
//泊松分布 Poisson
JavaDoubleRDD u = normalJavaRDD(jsc, 1000000L, 10);
JavaDoubleRDD v = u.map(
  new Function<Double, Double>() {
    public Double call(Double x) {
      return 1.0 + 2.0 * x;
    }
  });

6 核密度估计

RDD<Double> data = ... // an RDD of sample data

// Construct the density estimator with the sample data and a standard deviation for the Gaussian
// kernels
KernelDensity kd = new KernelDensity()
  .setSample(data)
  .setBandwidth(3.0);

// Find density estimates for the given values
double[] densities = kd.estimate(new double[] {-1.0, 2.0, 5.0});

1.3 分类与回归

问题类型 支持的方法
二分类 线性支持向量机、逻辑回归、决策树、随即森林、梯度提升树、朴素贝叶斯
多分类 逻辑回归、决策树、随即森林、朴素贝叶斯
回归 线性最小二乘、Lasso、岭回归、决策树、随即森林、梯度提升树、保序回归

1 线性模型

  • SVMWithSGD
  • LogisticRegressionWithLBFGS
  • LogisticRegressionWithSGD
  • LinearRegressionWithSGD
  • RidgeRegressionWithSGD
  • LassoWithSGD
数学公式

目标函数包含两部分:正规化(regularizer)和损失函数。

正规化用来控制模型的复杂度,损失用来度量模型在训练中的错误。

损失函数:

  • 合页损失(hinge loss)
  • 逻辑损失(logistic loss)
  • 平方损失(squared loss)

正规化:

  • L2
  • L1
  • elastic net

最优化:

  • SGD(Stochastic Gradient Descent-随机梯度下降)
  • L-BFGS(Limited-Memory Broyden–Fletcher–Goldfarb–Shanno)
分类

线性支持向量机

public class SVMClassifier {
  public static void main(String[] args) {
    SparkConf conf = new SparkConf().setAppName("SVM Classifier Example");
    SparkContext sc = new SparkContext(conf);
    String path = "data/mllib/sample_libsvm_data.txt";
    JavaRDD<LabeledPoint> data = MLUtils.loadLibSVMFile(sc, path).toJavaRDD();

    // Split initial RDD into two... [60% training data, 40% testing data].
    JavaRDD<LabeledPoint> training = data.sample(false, 0.6, 11L);
    training.cache();
    JavaRDD<LabeledPoint> test = data.subtract(training);

    // Run training algorithm to build the model.
    int numIterations = 100;
    final SVMModel model = SVMWithSGD.train(training.rdd(), numIterations);

    SVMWithSGD svmAlg = new SVMWithSGD();
    svmAlg.optimizer()
      .setNumIterations(200)
      .setRegParam(0.1)
      .setUpdater(new L1Updater());
    final SVMModel modelL1 = svmAlg.run(training.rdd());

    // Clear the default threshold.
    model.clearThreshold();

    // Compute raw scores on the test set.
    JavaRDD<Tuple2<Object, Object>> scoreAndLabels = test.map(
      new Function<LabeledPoint, Tuple2<Object, Object>>() {
        public Tuple2<Object, Object> call(LabeledPoint p) {
          Double score = model.predict(p.features());
          return new Tuple2<Object, Object>(score, p.label());
        }
      }
    );

    // Get evaluation metrics.
    BinaryClassificationMetrics metrics =
      new BinaryClassificationMetrics(JavaRDD.toRDD(scoreAndLabels));
    double auROC = metrics.areaUnderROC();

    System.out.println("Area under ROC = " + auROC);

    // Save and load model
    model.save(sc, "myModelPath");
    SVMModel sameModel = SVMModel.load(sc, "myModelPath");
  }
}

逻辑回归

public class MultinomialLogisticRegressionExample {
  public static void main(String[] args) {
    SparkConf conf = new SparkConf().setAppName("LogisticRegression Classifier Example");
    SparkContext sc = new SparkContext(conf);
    String path = "data/mllib/sample_libsvm_data.txt";
    JavaRDD<LabeledPoint> data = MLUtils.loadLibSVMFile(sc, path).toJavaRDD();

    // Split initial RDD into two... [60% training data, 40% testing data].
    JavaRDD<LabeledPoint>[] splits = data.randomSplit(new double[] {0.6, 0.4}, 11L);
    JavaRDD<LabeledPoint> training = splits[0].cache();
    JavaRDD<LabeledPoint> test = splits[1];

    // Run training algorithm to build the model.
    final LogisticRegressionModel model = new LogisticRegressionWithLBFGS()
      .setNumClasses(10)
      .run(training.rdd());

    // Compute raw scores on the test set.
    JavaRDD<Tuple2<Object, Object>> predictionAndLabels = test.map(
      new Function<LabeledPoint, Tuple2<Object, Object>>() {
        public Tuple2<Object, Object> call(LabeledPoint p) {
          Double prediction = model.predict(p.features());
          return new Tuple2<Object, Object>(prediction, p.label());
        }
      }
    );

    // Get evaluation metrics.
    MulticlassMetrics metrics = new MulticlassMetrics(predictionAndLabels.rdd());
    double precision = metrics.precision();
    System.out.println("Precision = " + precision);

    // Save and load model
    model.save(sc, "myModelPath");
    LogisticRegressionModel sameModel = LogisticRegressionModel.load(sc, "myModelPath");
  }
}

回归

线性最小二乘、Lasso、岭回归

public class LinearRegression {
  public static void main(String[] args) {
    SparkConf conf = new SparkConf().setAppName("Linear Regression Example");
    JavaSparkContext sc = new JavaSparkContext(conf);

    // Load and parse the data
    String path = "data/mllib/ridge-data/lpsa.data";
    JavaRDD<String> data = sc.textFile(path);
    JavaRDD<LabeledPoint> parsedData = data.map(
      new Function<String, LabeledPoint>() {
        public LabeledPoint call(String line) {
          String[] parts = line.split(",");
          String[] features = parts[1].split(" ");
          double[] v = new double[features.length];
          for (int i = 0; i < features.length - 1; i++)
            v[i] = Double.parseDouble(features[i]);
          return new LabeledPoint(Double.parseDouble(parts[0]), Vectors.dense(v));
        }
      }
    );
    parsedData.cache();

    // Building the model
    int numIterations = 100;
    final LinearRegressionModel model =
      LinearRegressionWithSGD.train(JavaRDD.toRDD(parsedData), numIterations);

    // Evaluate model on training examples and compute training error
    JavaRDD<Tuple2<Double, Double>> valuesAndPreds = parsedData.map(
      new Function<LabeledPoint, Tuple2<Double, Double>>() {
        public Tuple2<Double, Double> call(LabeledPoint point) {
          double prediction = model.predict(point.features());
          return new Tuple2<Double, Double>(prediction, point.label());
        }
      }
    );
    double MSE = new JavaDoubleRDD(valuesAndPreds.map(
      new Function<Tuple2<Double, Double>, Object>() {
        public Object call(Tuple2<Double, Double> pair) {
          return Math.pow(pair._1() - pair._2(), 2.0);
        }
      }
    ).rdd()).mean();
    System.out.println("training Mean Squared Error = " + MSE);

    // Save and load model
    model.save(sc.sc(), "myModelPath");
    LinearRegressionModel sameModel = LinearRegressionModel.load(sc.sc(), "myModelPath");
  }
}

2 决策树

节点不纯和信息增益

  • 节点不纯用来度量节点上标签的同质,实现包括分类模型中的基尼不纯和熵(Gini impurity and entropy)、回归模型中的方差(variance)。
  • 信息增益用来度量父节点不纯与两个子节点不纯的加权和的差异。

停止规则

  • 最大树深度maxDepth
  • 最小信息增益minInfoGain
  • 最小子节点实例数minInstancesPerNode
分类

examples/src/main/java/org/apache/spark/examples/mllib/JavaDecisionTreeClassificationExample.java

SparkConf sparkConf = new SparkConf().setAppName("JavaDecisionTreeClassificationExample");
JavaSparkContext jsc = new JavaSparkContext(sparkConf);

// Load and parse the data file.
String datapath = "data/mllib/sample_libsvm_data.txt";
JavaRDD<LabeledPoint> data = MLUtils.loadLibSVMFile(jsc.sc(), datapath).toJavaRDD();
// Split the data into training and test sets (30% held out for testing)
JavaRDD<LabeledPoint>[] splits = data.randomSplit(new double[]{0.7, 0.3});
JavaRDD<LabeledPoint> trainingData = splits[0];
JavaRDD<LabeledPoint> testData = splits[1];

// Set parameters.
//  Empty categoricalFeaturesInfo indicates all features are continuous.
Integer numClasses = 2;
Map<Integer, Integer> categoricalFeaturesInfo = new HashMap<Integer, Integer>();
String impurity = "gini";
Integer maxDepth = 5;
Integer maxBins = 32;

// Train a DecisionTree model for classification.
final DecisionTreeModel model = DecisionTree.trainClassifier(trainingData, numClasses,
  categoricalFeaturesInfo, impurity, maxDepth, maxBins);

// Evaluate model on test instances and compute test error
JavaPairRDD<Double, Double> predictionAndLabel =
  testData.mapToPair(new PairFunction<LabeledPoint, Double, Double>() {
    @Override
    public Tuple2<Double, Double> call(LabeledPoint p) {
      return new Tuple2<Double, Double>(model.predict(p.features()), p.label());
    }
  });
Double testErr =
  1.0 * predictionAndLabel.filter(new Function<Tuple2<Double, Double>, Boolean>() {
    @Override
    public Boolean call(Tuple2<Double, Double> pl) {
      return !pl._1().equals(pl._2());
    }
  }).count() / testData.count();

System.out.println("Test Error: " + testErr);
System.out.println("Learned classification tree model:\n" + model.toDebugString());

// Save and load model
model.save(jsc.sc(), "target/tmp/myDecisionTreeClassificationModel");
DecisionTreeModel sameModel = DecisionTreeModel
  .load(jsc.sc(), "target/tmp/myDecisionTreeClassificationModel");
回归

examples/src/main/java/org/apache/spark/examples/mllib/JavaDecisionTreeRegressionExample.java

SparkConf sparkConf = new SparkConf().setAppName("JavaDecisionTreeRegressionExample");
JavaSparkContext jsc = new JavaSparkContext(sparkConf);

// Load and parse the data file.
String datapath = "data/mllib/sample_libsvm_data.txt";
JavaRDD<LabeledPoint> data = MLUtils.loadLibSVMFile(jsc.sc(), datapath).toJavaRDD();
// Split the data into training and test sets (30% held out for testing)
JavaRDD<LabeledPoint>[] splits = data.randomSplit(new double[]{0.7, 0.3});
JavaRDD<LabeledPoint> trainingData = splits[0];
JavaRDD<LabeledPoint> testData = splits[1];

// Set parameters.
// Empty categoricalFeaturesInfo indicates all features are continuous.
Map<Integer, Integer> categoricalFeaturesInfo = new HashMap<Integer, Integer>();
String impurity = "variance";
Integer maxDepth = 5;
Integer maxBins = 32;

// Train a DecisionTree model.
final DecisionTreeModel model = DecisionTree.trainRegressor(trainingData,
  categoricalFeaturesInfo, impurity, maxDepth, maxBins);

// Evaluate model on test instances and compute test error
JavaPairRDD<Double, Double> predictionAndLabel =
  testData.mapToPair(new PairFunction<LabeledPoint, Double, Double>() {
  @Override
  public Tuple2<Double, Double> call(LabeledPoint p) {
    return new Tuple2<Double, Double>(model.predict(p.features()), p.label());
  }
});
Double testMSE =
  predictionAndLabel.map(new Function<Tuple2<Double, Double>, Double>() {
    @Override
    public Double call(Tuple2<Double, Double> pl) {
      Double diff = pl._1() - pl._2();
      return diff * diff;
    }
  }).reduce(new Function2<Double, Double, Double>() {
    @Override
    public Double call(Double a, Double b) {
      return a + b;
    }
  }) / data.count();
System.out.println("Test Mean Squared Error: " + testMSE);
System.out.println("Learned regression tree model:\n" + model.toDebugString());

// Save and load model
model.save(jsc.sc(), "target/tmp/myDecisionTreeRegressionModel");
DecisionTreeModel sameModel = DecisionTreeModel
  .load(jsc.sc(), "target/tmp/myDecisionTreeRegressionModel");

3 集成树

随机森林和梯度提升树(Random Forests and Gradient-Boosted Trees)

  • GradientBoostedTrees
  • RandomForest

随机森林

分类

examples/src/main/java/org/apache/spark/examples/mllib/JavaRandomForestClassificationExample.java

SparkConf sparkConf = new SparkConf().setAppName("JavaRandomForestClassificationExample");
JavaSparkContext jsc = new JavaSparkContext(sparkConf);
// Load and parse the data file.
String datapath = "data/mllib/sample_libsvm_data.txt";
JavaRDD<LabeledPoint> data = MLUtils.loadLibSVMFile(jsc.sc(), datapath).toJavaRDD();
// Split the data into training and test sets (30% held out for testing)
JavaRDD<LabeledPoint>[] splits = data.randomSplit(new double[]{0.7, 0.3});
JavaRDD<LabeledPoint> trainingData = splits[0];
JavaRDD<LabeledPoint> testData = splits[1];

// Train a RandomForest model.
// Empty categoricalFeaturesInfo indicates all features are continuous.
Integer numClasses = 2;
HashMap<Integer, Integer> categoricalFeaturesInfo = new HashMap<Integer, Integer>();
Integer numTrees = 3; // Use more in practice.
String featureSubsetStrategy = "auto"; // Let the algorithm choose.
String impurity = "gini";
Integer maxDepth = 5;
Integer maxBins = 32;
Integer seed = 12345;

final RandomForestModel model = RandomForest.trainClassifier(trainingData, numClasses,
  categoricalFeaturesInfo, numTrees, featureSubsetStrategy, impurity, maxDepth, maxBins,
  seed);

// Evaluate model on test instances and compute test error
JavaPairRDD<Double, Double> predictionAndLabel =
  testData.mapToPair(new PairFunction<LabeledPoint, Double, Double>() {
    @Override
    public Tuple2<Double, Double> call(LabeledPoint p) {
      return new Tuple2<Double, Double>(model.predict(p.features()), p.label());
    }
  });
Double testErr =
  1.0 * predictionAndLabel.filter(new Function<Tuple2<Double, Double>, Boolean>() {
    @Override
    public Boolean call(Tuple2<Double, Double> pl) {
      return !pl._1().equals(pl._2());
    }
  }).count() / testData.count();
System.out.println("Test Error: " + testErr);
System.out.println("Learned classification forest model:\n" + model.toDebugString());

// Save and load model
model.save(jsc.sc(), "target/tmp/myRandomForestClassificationModel");
RandomForestModel sameModel = RandomForestModel.load(jsc.sc(),
  "target/tmp/myRandomForestClassificationModel");
回归

examples/src/main/java/org/apache/spark/examples/mllib/JavaRandomForestRegressionExample.java

SparkConf sparkConf = new SparkConf().setAppName("JavaRandomForestRegressionExample");
JavaSparkContext jsc = new JavaSparkContext(sparkConf);
// Load and parse the data file.
String datapath = "data/mllib/sample_libsvm_data.txt";
JavaRDD<LabeledPoint> data = MLUtils.loadLibSVMFile(jsc.sc(), datapath).toJavaRDD();
// Split the data into training and test sets (30% held out for testing)
JavaRDD<LabeledPoint>[] splits = data.randomSplit(new double[]{0.7, 0.3});
JavaRDD<LabeledPoint> trainingData = splits[0];
JavaRDD<LabeledPoint> testData = splits[1];

// Set parameters.
// Empty categoricalFeaturesInfo indicates all features are continuous.
Map<Integer, Integer> categoricalFeaturesInfo = new HashMap<Integer, Integer>();
Integer numTrees = 3; // Use more in practice.
String featureSubsetStrategy = "auto"; // Let the algorithm choose.
String impurity = "variance";
Integer maxDepth = 4;
Integer maxBins = 32;
Integer seed = 12345;
// Train a RandomForest model.
final RandomForestModel model = RandomForest.trainRegressor(trainingData,
  categoricalFeaturesInfo, numTrees, featureSubsetStrategy, impurity, maxDepth, maxBins, seed);

// Evaluate model on test instances and compute test error
JavaPairRDD<Double, Double> predictionAndLabel =
  testData.mapToPair(new PairFunction<LabeledPoint, Double, Double>() {
    @Override
    public Tuple2<Double, Double> call(LabeledPoint p) {
      return new Tuple2<Double, Double>(model.predict(p.features()), p.label());
    }
  });
Double testMSE =
  predictionAndLabel.map(new Function<Tuple2<Double, Double>, Double>() {
    @Override
    public Double call(Tuple2<Double, Double> pl) {
      Double diff = pl._1() - pl._2();
      return diff * diff;
    }
  }).reduce(new Function2<Double, Double, Double>() {
    @Override
    public Double call(Double a, Double b) {
      return a + b;
    }
  }) / testData.count();
System.out.println("Test Mean Squared Error: " + testMSE);
System.out.println("Learned regression forest model:\n" + model.toDebugString());

// Save and load model
model.save(jsc.sc(), "target/tmp/myRandomForestRegressionModel");
RandomForestModel sameModel = RandomForestModel.load(jsc.sc(),
  "target/tmp/myRandomForestRegressionModel");

梯度提升树

分类

examples/src/main/java/org/apache/spark/examples/mllib/JavaGradientBoostingClassificationExample.java

SparkConf sparkConf = new SparkConf()
  .setAppName("JavaGradientBoostedTreesClassificationExample");
JavaSparkContext jsc = new JavaSparkContext(sparkConf);

// Load and parse the data file.
String datapath = "data/mllib/sample_libsvm_data.txt";
JavaRDD<LabeledPoint> data = MLUtils.loadLibSVMFile(jsc.sc(), datapath).toJavaRDD();
// Split the data into training and test sets (30% held out for testing)
JavaRDD<LabeledPoint>[] splits = data.randomSplit(new double[]{0.7, 0.3});
JavaRDD<LabeledPoint> trainingData = splits[0];
JavaRDD<LabeledPoint> testData = splits[1];

// Train a GradientBoostedTrees model.
// The defaultParams for Classification use LogLoss by default.
BoostingStrategy boostingStrategy = BoostingStrategy.defaultParams("Classification");
boostingStrategy.setNumIterations(3); // Note: Use more iterations in practice.
boostingStrategy.getTreeStrategy().setNumClasses(2);
boostingStrategy.getTreeStrategy().setMaxDepth(5);
// Empty categoricalFeaturesInfo indicates all features are continuous.
Map<Integer, Integer> categoricalFeaturesInfo = new HashMap<Integer, Integer>();
boostingStrategy.treeStrategy().setCategoricalFeaturesInfo(categoricalFeaturesInfo);

final GradientBoostedTreesModel model =
  GradientBoostedTrees.train(trainingData, boostingStrategy);

// Evaluate model on test instances and compute test error
JavaPairRDD<Double, Double> predictionAndLabel =
  testData.mapToPair(new PairFunction<LabeledPoint, Double, Double>() {
    @Override
    public Tuple2<Double, Double> call(LabeledPoint p) {
      return new Tuple2<Double, Double>(model.predict(p.features()), p.label());
    }
  });
Double testErr =
  1.0 * predictionAndLabel.filter(new Function<Tuple2<Double, Double>, Boolean>() {
    @Override
    public Boolean call(Tuple2<Double, Double> pl) {
      return !pl._1().equals(pl._2());
    }
  }).count() / testData.count();
System.out.println("Test Error: " + testErr);
System.out.println("Learned classification GBT model:\n" + model.toDebugString());

// Save and load model
model.save(jsc.sc(), "target/tmp/myGradientBoostingClassificationModel");
GradientBoostedTreesModel sameModel = GradientBoostedTreesModel.load(jsc.sc(),
  "target/tmp/myGradientBoostingClassificationModel");
回归

examples/src/main/java/org/apache/spark/examples/mllib/JavaGradientBoostingRegressionExample.java

SparkConf sparkConf = new SparkConf()
  .setAppName("JavaGradientBoostedTreesRegressionExample");
JavaSparkContext jsc = new JavaSparkContext(sparkConf);
// Load and parse the data file.
String datapath = "data/mllib/sample_libsvm_data.txt";
JavaRDD<LabeledPoint> data = MLUtils.loadLibSVMFile(jsc.sc(), datapath).toJavaRDD();
// Split the data into training and test sets (30% held out for testing)
JavaRDD<LabeledPoint>[] splits = data.randomSplit(new double[]{0.7, 0.3});
JavaRDD<LabeledPoint> trainingData = splits[0];
JavaRDD<LabeledPoint> testData = splits[1];

// Train a GradientBoostedTrees model.
// The defaultParams for Regression use SquaredError by default.
BoostingStrategy boostingStrategy = BoostingStrategy.defaultParams("Regression");
boostingStrategy.setNumIterations(3); // Note: Use more iterations in practice.
boostingStrategy.getTreeStrategy().setMaxDepth(5);
// Empty categoricalFeaturesInfo indicates all features are continuous.
Map<Integer, Integer> categoricalFeaturesInfo = new HashMap<Integer, Integer>();
boostingStrategy.treeStrategy().setCategoricalFeaturesInfo(categoricalFeaturesInfo);

final GradientBoostedTreesModel model =
  GradientBoostedTrees.train(trainingData, boostingStrategy);

// Evaluate model on test instances and compute test error
JavaPairRDD<Double, Double> predictionAndLabel =
  testData.mapToPair(new PairFunction<LabeledPoint, Double, Double>() {
    @Override
    public Tuple2<Double, Double> call(LabeledPoint p) {
      return new Tuple2<Double, Double>(model.predict(p.features()), p.label());
    }
  });
Double testMSE =
  predictionAndLabel.map(new Function<Tuple2<Double, Double>, Double>() {
    @Override
    public Double call(Tuple2<Double, Double> pl) {
      Double diff = pl._1() - pl._2();
      return diff * diff;
    }
  }).reduce(new Function2<Double, Double, Double>() {
    @Override
    public Double call(Double a, Double b) {
      return a + b;
    }
  }) / data.count();
System.out.println("Test Mean Squared Error: " + testMSE);
System.out.println("Learned regression GBT model:\n" + model.toDebugString());

// Save and load model
model.save(jsc.sc(), "target/tmp/myGradientBoostingRegressionModel");
GradientBoostedTreesModel sameModel = GradientBoostedTreesModel.load(jsc.sc(),
  "target/tmp/myGradientBoostingRegressionModel");

4 朴素贝叶斯

  • 多项式模型 以单词为粒度 “multinomial”
  • 伯努利模型 以文件为粒度 “bernoulli”

examples/src/main/java/org/apache/spark/examples/mllib/JavaNaiveBayesExample.java

String path = "data/mllib/sample_naive_bayes_data.txt";
JavaRDD<LabeledPoint> inputData = MLUtils.loadLibSVMFile(jsc.sc(), path).toJavaRDD();
JavaRDD<LabeledPoint>[] tmp = inputData.randomSplit(new double[]{0.6, 0.4}, 12345);
JavaRDD<LabeledPoint> training = tmp[0]; // training set
JavaRDD<LabeledPoint> test = tmp[1]; // test set
final NaiveBayesModel model = NaiveBayes.train(training.rdd(), 1.0);
JavaPairRDD<Double, Double> predictionAndLabel =
  test.mapToPair(new PairFunction<LabeledPoint, Double, Double>() {
    @Override
    public Tuple2<Double, Double> call(LabeledPoint p) {
      return new Tuple2<Double, Double>(model.predict(p.features()), p.label());
    }
  });
double accuracy = predictionAndLabel.filter(new Function<Tuple2<Double, Double>, Boolean>() {
  @Override
  public Boolean call(Tuple2<Double, Double> pl) {
    return pl._1().equals(pl._2());
  }
}).count() / (double) test.count();

// Save and load model
model.save(jsc.sc(), "target/tmp/myNaiveBayesModel");
NaiveBayesModel sameModel = NaiveBayesModel.load(jsc.sc(), "target/tmp/myNaiveBayesModel");

5 保序回归

examples/src/main/java/org/apache/spark/examples/mllib/JavaIsotonicRegressionExample.java

JavaRDD<String> data = jsc.textFile("data/mllib/sample_isotonic_regression_data.txt");

// Create label, feature, weight tuples from input data with weight set to default value 1.0.
JavaRDD<Tuple3<Double, Double, Double>> parsedData = data.map(
  new Function<String, Tuple3<Double, Double, Double>>() {
    public Tuple3<Double, Double, Double> call(String line) {
      String[] parts = line.split(",");
      return new Tuple3<>(new Double(parts[0]), new Double(parts[1]), 1.0);
    }
  }
);

// Split data into training (60%) and test (40%) sets.
JavaRDD<Tuple3<Double, Double, Double>>[] splits = parsedData.randomSplit(new double[]{0.6, 0.4}, 11L);
JavaRDD<Tuple3<Double, Double, Double>> training = splits[0];
JavaRDD<Tuple3<Double, Double, Double>> test = splits[1];

// Create isotonic regression model from training data.
// Isotonic parameter defaults to true so it is only shown for demonstration
final IsotonicRegressionModel model = new IsotonicRegression().setIsotonic(true).run(training);

// Create tuples of predicted and real labels.
JavaPairRDD<Double, Double> predictionAndLabel = test.mapToPair(
  new PairFunction<Tuple3<Double, Double, Double>, Double, Double>() {
    @Override
    public Tuple2<Double, Double> call(Tuple3<Double, Double, Double> point) {
      Double predictedLabel = model.predict(point._2());
      return new Tuple2<Double, Double>(predictedLabel, point._1());
    }
  }
);

// Calculate mean squared error between predicted and real labels.
Double meanSquaredError = new JavaDoubleRDD(predictionAndLabel.map(
  new Function<Tuple2<Double, Double>, Object>() {
    @Override
    public Object call(Tuple2<Double, Double> pl) {
      return Math.pow(pl._1() - pl._2(), 2);
    }
  }
).rdd()).mean();
System.out.println("Mean Squared Error = " + meanSquaredError);

// Save and load model
model.save(jsc.sc(), "target/tmp/myIsotonicRegressionModel");
IsotonicRegressionModel sameModel = IsotonicRegressionModel.load(jsc.sc(), "target/tmp/myIsotonicRegressionModel");

1.4 协同过滤

交替最小二乘(ALS)

显式反馈和隐式反馈

SparkConf conf = new SparkConf().setAppName("Java Collaborative Filtering Example");
JavaSparkContext jsc = new JavaSparkContext(conf);

// Load and parse the data
String path = "data/mllib/als/test.data";
JavaRDD<String> data = jsc.textFile(path);
JavaRDD<Rating> ratings = data.map(
  new Function<String, Rating>() {
    public Rating call(String s) {
      String[] sarray = s.split(",");
      return new Rating(Integer.parseInt(sarray[0]), Integer.parseInt(sarray[1]),
        Double.parseDouble(sarray[2]));
    }
  }
);

// Build the recommendation model using ALS
int rank = 10;
int numIterations = 10;
MatrixFactorizationModel model = ALS.train(JavaRDD.toRDD(ratings), rank, numIterations, 0.01);

// Evaluate the model on rating data
JavaRDD<Tuple2<Object, Object>> userProducts = ratings.map(
  new Function<Rating, Tuple2<Object, Object>>() {
    public Tuple2<Object, Object> call(Rating r) {
      return new Tuple2<Object, Object>(r.user(), r.product());
    }
  }
);
JavaPairRDD<Tuple2<Integer, Integer>, Double> predictions = JavaPairRDD.fromJavaRDD(
  model.predict(JavaRDD.toRDD(userProducts)).toJavaRDD().map(
    new Function<Rating, Tuple2<Tuple2<Integer, Integer>, Double>>() {
      public Tuple2<Tuple2<Integer, Integer>, Double> call(Rating r){
        return new Tuple2<Tuple2<Integer, Integer>, Double>(
          new Tuple2<Integer, Integer>(r.user(), r.product()), r.rating());
      }
    }
  ));
JavaRDD<Tuple2<Double, Double>> ratesAndPreds =
  JavaPairRDD.fromJavaRDD(ratings.map(
    new Function<Rating, Tuple2<Tuple2<Integer, Integer>, Double>>() {
      public Tuple2<Tuple2<Integer, Integer>, Double> call(Rating r){
        return new Tuple2<Tuple2<Integer, Integer>, Double>(
          new Tuple2<Integer, Integer>(r.user(), r.product()), r.rating());
      }
    }
  )).join(predictions).values();
double MSE = JavaDoubleRDD.fromRDD(ratesAndPreds.map(
  new Function<Tuple2<Double, Double>, Object>() {
    public Object call(Tuple2<Double, Double> pair) {
      Double err = pair._1() - pair._2();
      return err * err;
    }
  }
).rdd()).mean();
System.out.println("Mean Squared Error = " + MSE);

// Save and load model
model.save(jsc.sc(), "target/tmp/myCollaborativeFilter");
MatrixFactorizationModel sameModel = MatrixFactorizationModel.load(jsc.sc(),
  "target/tmp/myCollaborativeFilter");

1.5 聚类

1 K均值

public class KMeansExample {
  public static void main(String[] args) {
    SparkConf conf = new SparkConf().setAppName("K-means Example");
    JavaSparkContext sc = new JavaSparkContext(conf);

    // Load and parse data
    String path = "data/mllib/kmeans_data.txt";
    JavaRDD<String> data = sc.textFile(path);
    JavaRDD<Vector> parsedData = data.map(
      new Function<String, Vector>() {
        public Vector call(String s) {
          String[] sarray = s.split(" ");
          double[] values = new double[sarray.length];
          for (int i = 0; i < sarray.length; i++)
            values[i] = Double.parseDouble(sarray[i]);
          return Vectors.dense(values);
        }
      }
    );
    parsedData.cache();

    // Cluster the data into two classes using KMeans
    int numClusters = 2;
    int numIterations = 20;
    KMeansModel clusters = KMeans.train(parsedData.rdd(), numClusters, numIterations);

    // Evaluate clustering by computing Within Set Sum of Squared Errors
    double WSSSE = clusters.computeCost(parsedData.rdd());
    System.out.println("Within Set Sum of Squared Errors = " + WSSSE);

    // Save and load model
    clusters.save(sc.sc(), "myModelPath");
    KMeansModel sameModel = KMeansModel.load(sc.sc(), "myModelPath");
  }
}

2 高斯混合

public class GaussianMixtureExample {
  public static void main(String[] args) {
    SparkConf conf = new SparkConf().setAppName("GaussianMixture Example");
    JavaSparkContext sc = new JavaSparkContext(conf);

    // Load and parse data
    String path = "data/mllib/gmm_data.txt";
    JavaRDD<String> data = sc.textFile(path);
    JavaRDD<Vector> parsedData = data.map(
      new Function<String, Vector>() {
        public Vector call(String s) {
          String[] sarray = s.trim().split(" ");
          double[] values = new double[sarray.length];
          for (int i = 0; i < sarray.length; i++)
            values[i] = Double.parseDouble(sarray[i]);
          return Vectors.dense(values);
        }
      }
    );
    parsedData.cache();

    // Cluster the data into two classes using GaussianMixture
    GaussianMixtureModel gmm = new GaussianMixture().setK(2).run(parsedData.rdd());

    // Save and load GaussianMixtureModel
    gmm.save(sc.sc(), "myGMMModel");
    GaussianMixtureModel sameModel = GaussianMixtureModel.load(sc.sc(), "myGMMModel");
    // Output the parameters of the mixture model
    for(int j=0; j<gmm.k(); j++) {
        System.out.printf("weight=%f\nmu=%s\nsigma=\n%s\n",
            gmm.weights()[j], gmm.gaussians()[j].mu(), gmm.gaussians()[j].sigma());
    }
  }
}

3 幂迭代聚类(PIC)

// Load and parse the data
JavaRDD<String> data = sc.textFile("data/mllib/pic_data.txt");
JavaRDD<Tuple3<Long, Long, Double>> similarities = data.map(
  new Function<String, Tuple3<Long, Long, Double>>() {
    public Tuple3<Long, Long, Double> call(String line) {
      String[] parts = line.split(" ");
      return new Tuple3<>(new Long(parts[0]), new Long(parts[1]), new Double(parts[2]));
    }
  }
);

// Cluster the data into two classes using PowerIterationClustering
PowerIterationClustering pic = new PowerIterationClustering()
  .setK(2)
  .setMaxIterations(10);
PowerIterationClusteringModel model = pic.run(similarities);

for (PowerIterationClustering.Assignment a: model.assignments().toJavaRDD().collect()) {
  System.out.println(a.id() + " -> " + a.cluster());
}

// Save and load model
model.save(sc.sc(), "myModelPath");
PowerIterationClusteringModel sameModel = PowerIterationClusteringModel.load(sc.sc(), "myModelPath");

4 LDA

public class JavaLDAExample {
  public static void main(String[] args) {
    SparkConf conf = new SparkConf().setAppName("LDA Example");
    JavaSparkContext sc = new JavaSparkContext(conf);

    // Load and parse the data
    String path = "data/mllib/sample_lda_data.txt";
    JavaRDD<String> data = sc.textFile(path);
    JavaRDD<Vector> parsedData = data.map(
        new Function<String, Vector>() {
          public Vector call(String s) {
            String[] sarray = s.trim().split(" ");
            double[] values = new double[sarray.length];
            for (int i = 0; i < sarray.length; i++)
              values[i] = Double.parseDouble(sarray[i]);
            return Vectors.dense(values);
          }
        }
    );
    // Index documents with unique IDs
    JavaPairRDD<Long, Vector> corpus = JavaPairRDD.fromJavaRDD(parsedData.zipWithIndex().map(
        new Function<Tuple2<Vector, Long>, Tuple2<Long, Vector>>() {
          public Tuple2<Long, Vector> call(Tuple2<Vector, Long> doc_id) {
            return doc_id.swap();
          }
        }
    ));
    corpus.cache();

    // Cluster the documents into three topics using LDA
    DistributedLDAModel ldaModel = new LDA().setK(3).run(corpus);

    // Output topics. Each is a distribution over words (matching word count vectors)
    System.out.println("Learned topics (as distributions over vocab of " + ldaModel.vocabSize()
        + " words):");
    Matrix topics = ldaModel.topicsMatrix();
    for (int topic = 0; topic < 3; topic++) {
      System.out.print("Topic " + topic + ":");
      for (int word = 0; word < ldaModel.vocabSize(); word++) {
        System.out.print(" " + topics.apply(word, topic));
      }
      System.out.println();
    }

    ldaModel.save(sc.sc(), "myLDAModel");
    DistributedLDAModel sameModel = DistributedLDAModel.load(sc.sc(), "myLDAModel");
  }
}

5 二分K均值

ArrayList<Vector> localData = Lists.newArrayList(
  Vectors.dense(0.1, 0.1),   Vectors.dense(0.3, 0.3),
  Vectors.dense(10.1, 10.1), Vectors.dense(10.3, 10.3),
  Vectors.dense(20.1, 20.1), Vectors.dense(20.3, 20.3),
  Vectors.dense(30.1, 30.1), Vectors.dense(30.3, 30.3)
);
JavaRDD<Vector> data = sc.parallelize(localData, 2);

BisectingKMeans bkm = new BisectingKMeans()
  .setK(4);
BisectingKMeansModel model = bkm.run(data);

System.out.println("Compute Cost: " + model.computeCost(data));
for (Vector center: model.clusterCenters()) {
  System.out.println("");
}
Vector[] clusterCenters = model.clusterCenters();
for (int i = 0; i < clusterCenters.length; i++) {
  Vector clusterCenter = clusterCenters[i];
  System.out.println("Cluster Center " + i + ": " + clusterCenter);
}

6 流式K均值

val trainingData = ssc.textFileStream("/training/data/dir").map(Vectors.parse)
val testData = ssc.textFileStream("/testing/data/dir").map(LabeledPoint.parse)

val numDimensions = 3
val numClusters = 2
val model = new StreamingKMeans()
  .setK(numClusters)
  .setDecayFactor(1.0)
  .setRandomCenters(numDimensions, 0.0)

model.trainOn(trainingData)
model.predictOnValues(testData.map(lp => (lp.label, lp.features))).print()

ssc.start()
ssc.awaitTermination()

1.6 降维

1 奇异值分解(SVD)

public class SVD {
  public static void main(String[] args) {
    SparkConf conf = new SparkConf().setAppName("SVD Example");
    SparkContext sc = new SparkContext(conf);

    double[][] array = ...
    LinkedList<Vector> rowsList = new LinkedList<Vector>();
    for (int i = 0; i < array.length; i++) {
      Vector currentRow = Vectors.dense(array[i]);
      rowsList.add(currentRow);
    }
    JavaRDD<Vector> rows = JavaSparkContext.fromSparkContext(sc).parallelize(rowsList);

    // Create a RowMatrix from JavaRDD<Vector>.
    RowMatrix mat = new RowMatrix(rows.rdd());

    // Compute the top 4 singular values and corresponding singular vectors.
    SingularValueDecomposition<RowMatrix, Matrix> svd = mat.computeSVD(4, true, 1.0E-9d);
    RowMatrix U = svd.U();
    Vector s = svd.s();
    Matrix V = svd.V();
  }
}

2 主成分分析(PCA)

public class PCA {
  public static void main(String[] args) {
    SparkConf conf = new SparkConf().setAppName("PCA Example");
    SparkContext sc = new SparkContext(conf);

    double[][] array = ...
    LinkedList<Vector> rowsList = new LinkedList<Vector>();
    for (int i = 0; i < array.length; i++) {
      Vector currentRow = Vectors.dense(array[i]);
      rowsList.add(currentRow);
    }
    JavaRDD<Vector> rows = JavaSparkContext.fromSparkContext(sc).parallelize(rowsList);

    // Create a RowMatrix from JavaRDD<Vector>.
    RowMatrix mat = new RowMatrix(rows.rdd());

    // Compute the top 3 principal components.
    Matrix pc = mat.computePrincipalComponents(3);
    RowMatrix projected = mat.multiply(pc);
  }
}

1.7 特征提取和转换

TF-IDF

val sc: SparkContext = ...

// Load documents (one per line).
val documents: RDD[Seq[String]] = sc.textFile("...").map(_.split(" ").toSeq)

val hashingTF = new HashingTF()
val tf: RDD[Vector] = hashingTF.transform(documents)

tf.cache()
val idf = new IDF().fit(tf)
val tfidf: RDD[Vector] = idf.transform(tf)

tf.cache()
val idf = new IDF(minDocFreq = 2).fit(tf)
val tfidf: RDD[Vector] = idf.transform(tf)

Word2Vec

val input = sc.textFile("text8").map(line => line.split(" ").toSeq)

val word2vec = new Word2Vec()

val model = word2vec.fit(input)

val synonyms = model.findSynonyms("china", 40)

for((synonym, cosineSimilarity) <- synonyms) {
  println(s"$synonym $cosineSimilarity")
}

// Save and load model
model.save(sc, "myModelPath")
val sameModel = Word2VecModel.load(sc, "myModelPath")

标准化(StandardScaler)

val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt")

val scaler1 = new StandardScaler().fit(data.map(x => x.features))
val scaler2 = new StandardScaler(withMean = true, withStd = true).fit(data.map(x => x.features))
// scaler3 is an identical model to scaler2, and will produce identical transformations
val scaler3 = new StandardScalerModel(scaler2.std, scaler2.mean)

// data1 will be unit variance.
val data1 = data.map(x => (x.label, scaler1.transform(x.features)))

// Without converting the features into dense vectors, transformation with zero mean will raise
// exception on sparse vector.
// data2 will be unit variance and zero mean.
val data2 = data.map(x => (x.label, scaler2.transform(Vectors.dense(x.features.toArray))))

归一化(Normalizer)

val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt")

val normalizer1 = new Normalizer()
val normalizer2 = new Normalizer(p = Double.PositiveInfinity)

// Each sample in data1 will be normalized using $L^2$ norm.
val data1 = data.map(x => (x.label, normalizer1.transform(x.features)))

// Each sample in data2 will be normalized using $L^\infty$ norm.
val data2 = data.map(x => (x.label, normalizer2.transform(x.features)))

卡方选择(ChiSqSelector)

SparkConf sparkConf = new SparkConf().setAppName("JavaChiSqSelector");
JavaSparkContext sc = new JavaSparkContext(sparkConf);
JavaRDD<LabeledPoint> points = MLUtils.loadLibSVMFile(sc.sc(),
    "data/mllib/sample_libsvm_data.txt").toJavaRDD().cache();

// Discretize data in 16 equal bins since ChiSqSelector requires categorical features
// Even though features are doubles, the ChiSqSelector treats each unique value as a category
JavaRDD<LabeledPoint> discretizedData = points.map(
    new Function<LabeledPoint, LabeledPoint>() {
      @Override
      public LabeledPoint call(LabeledPoint lp) {
        final double[] discretizedFeatures = new double[lp.features().size()];
        for (int i = 0; i < lp.features().size(); ++i) {
          discretizedFeatures[i] = Math.floor(lp.features().apply(i) / 16);
        }
        return new LabeledPoint(lp.label(), Vectors.dense(discretizedFeatures));
      }
    });

// Create ChiSqSelector that will select top 50 of 692 features
ChiSqSelector selector = new ChiSqSelector(50);
// Create ChiSqSelector model (selecting features)
final ChiSqSelectorModel transformer = selector.fit(discretizedData.rdd());
// Filter the top 50 features from each feature vector
JavaRDD<LabeledPoint> filteredData = discretizedData.map(
    new Function<LabeledPoint, LabeledPoint>() {
      @Override
      public LabeledPoint call(LabeledPoint lp) {
        return new LabeledPoint(lp.label(), transformer.transform(lp.features()));
      }
    }
);

sc.stop();

ElementwiseProduct

// Create some vector data; also works for sparse vectors
JavaRDD<Vector> data = sc.parallelize(Arrays.asList(
  Vectors.dense(1.0, 2.0, 3.0), Vectors.dense(4.0, 5.0, 6.0)));
Vector transformingVector = Vectors.dense(0.0, 1.0, 2.0);
ElementwiseProduct transformer = new ElementwiseProduct(transformingVector);

// Batch transform and per-row transform give the same results:
JavaRDD<Vector> transformedData = transformer.transform(data);
JavaRDD<Vector> transformedData2 = data.map(
  new Function<Vector, Vector>() {
    @Override
    public Vector call(Vector v) {
      return transformer.transform(v);
    }
  }
);

PCA

val data = sc.textFile("data/mllib/ridge-data/lpsa.data").map { line =>
  val parts = line.split(',')
  LabeledPoint(parts(0).toDouble, Vectors.dense(parts(1).split(' ').map(_.toDouble)))
}.cache()

val splits = data.randomSplit(Array(0.6, 0.4), seed = 11L)
val training = splits(0).cache()
val test = splits(1)

val pca = new PCA(training.first().features.size/2).fit(data.map(_.features))
val training_pca = training.map(p => p.copy(features = pca.transform(p.features)))
val test_pca = test.map(p => p.copy(features = pca.transform(p.features)))

val numIterations = 100
val model = LinearRegressionWithSGD.train(training, numIterations)
val model_pca = LinearRegressionWithSGD.train(training_pca, numIterations)

val valuesAndPreds = test.map { point =>
  val score = model.predict(point.features)
  (score, point.label)
}

val valuesAndPreds_pca = test_pca.map { point =>
  val score = model_pca.predict(point.features)
  (score, point.label)
}

val MSE = valuesAndPreds.map{case(v, p) => math.pow((v - p), 2)}.mean()
val MSE_pca = valuesAndPreds_pca.map{case(v, p) => math.pow((v - p), 2)}.mean()

println("Mean Squared Error = " + MSE)
println("PCA Mean Squared Error = " + MSE_pca)

1.8 频繁模式挖掘(FPM)

FP-growth

examples/src/main/java/org/apache/spark/examples/mllib/JavaSimpleFPGrowth.java

JavaRDD<String> data = sc.textFile("data/mllib/sample_fpgrowth.txt");

JavaRDD<List<String>> transactions = data.map(
  new Function<String, List<String>>() {
    public List<String> call(String line) {
      String[] parts = line.split(" ");
      return Arrays.asList(parts);
    }
  }
);

FPGrowth fpg = new FPGrowth()
  .setMinSupport(0.2)
  .setNumPartitions(10);
FPGrowthModel<String> model = fpg.run(transactions);

for (FPGrowth.FreqItemset<String> itemset: model.freqItemsets().toJavaRDD().collect()) {
  System.out.println("[" + itemset.javaItems() + "], " + itemset.freq());
}

double minConfidence = 0.8;
for (AssociationRules.Rule<String> rule
  : model.generateAssociationRules(minConfidence).toJavaRDD().collect()) {
  System.out.println(
    rule.javaAntecedent() + " => " + rule.javaConsequent() + ", " + rule.confidence());
}

Association Rules

examples/src/main/java/org/apache/spark/examples/mllib/JavaAssociationRulesExample.java

JavaRDD<FPGrowth.FreqItemset<String>> freqItemsets = sc.parallelize(Arrays.asList(
  new FreqItemset<String>(new String[] {"a"}, 15L),
  new FreqItemset<String>(new String[] {"b"}, 35L),
  new FreqItemset<String>(new String[] {"a", "b"}, 12L)
));

AssociationRules arules = new AssociationRules()
  .setMinConfidence(0.8);
JavaRDD<AssociationRules.Rule<String>> results = arules.run(freqItemsets);

for (AssociationRules.Rule<String> rule : results.collect()) {
  System.out.println(
    rule.javaAntecedent() + " => " + rule.javaConsequent() + ", " + rule.confidence());
}

PrefixSpan

examples/src/main/java/org/apache/spark/examples/mllib/JavaPrefixSpanExample.java

JavaRDD<List<List<Integer>>> sequences = sc.parallelize(Arrays.asList(
  Arrays.asList(Arrays.asList(1, 2), Arrays.asList(3)),
  Arrays.asList(Arrays.asList(1), Arrays.asList(3, 2), Arrays.asList(1, 2)),
  Arrays.asList(Arrays.asList(1, 2), Arrays.asList(5)),
  Arrays.asList(Arrays.asList(6))
), 2);
PrefixSpan prefixSpan = new PrefixSpan()
  .setMinSupport(0.5)
  .setMaxPatternLength(5);
PrefixSpanModel<Integer> model = prefixSpan.run(sequences);
for (PrefixSpan.FreqSequence<Integer> freqSeq: model.freqSequences().toJavaRDD().collect()) {
  System.out.println(freqSeq.javaSequence() + ", " + freqSeq.freq());
}

1.9 评估指标

分类模型评估

  • True Positive (TP) - label is positive and prediction is also positive
  • True Negative (TN) - label is negative and prediction is also negative
  • False Positive (FP) - label is negative but prediction is positive
  • False Negative (FN) - label is positive but prediction is negative

二分类

  • Precision (Postive Predictive Value)
  • Recall (True Positive Rate)
  • F-measure
  • Receiver Operating Characteristic (ROC)
  • Area Under ROC Curve
  • Area Under Precision-Recall Curve

examples/src/main/java/org/apache/spark/examples/mllib/JavaBinaryClassificationMetricsExample.java

String path = "data/mllib/sample_binary_classification_data.txt";
JavaRDD<LabeledPoint> data = MLUtils.loadLibSVMFile(sc, path).toJavaRDD();

// Split initial RDD into two... [60% training data, 40% testing data].
JavaRDD<LabeledPoint>[] splits =
  data.randomSplit(new double[]{0.6, 0.4}, 11L);
JavaRDD<LabeledPoint> training = splits[0].cache();
JavaRDD<LabeledPoint> test = splits[1];

// Run training algorithm to build the model.
final LogisticRegressionModel model = new LogisticRegressionWithLBFGS()
  .setNumClasses(2)
  .run(training.rdd());

// Clear the prediction threshold so the model will return probabilities
model.clearThreshold();

// Compute raw scores on the test set.
JavaRDD<Tuple2<Object, Object>> predictionAndLabels = test.map(
  new Function<LabeledPoint, Tuple2<Object, Object>>() {
    public Tuple2<Object, Object> call(LabeledPoint p) {
      Double prediction = model.predict(p.features());
      return new Tuple2<Object, Object>(prediction, p.label());
    }
  }
);

// Get evaluation metrics.
BinaryClassificationMetrics metrics = new BinaryClassificationMetrics(predictionAndLabels.rdd());

// Precision by threshold
JavaRDD<Tuple2<Object, Object>> precision = metrics.precisionByThreshold().toJavaRDD();
System.out.println("Precision by threshold: " + precision.toArray());

// Recall by threshold
JavaRDD<Tuple2<Object, Object>> recall = metrics.recallByThreshold().toJavaRDD();
System.out.println("Recall by threshold: " + recall.toArray());

// F Score by threshold
JavaRDD<Tuple2<Object, Object>> f1Score = metrics.fMeasureByThreshold().toJavaRDD();
System.out.println("F1 Score by threshold: " + f1Score.toArray());

JavaRDD<Tuple2<Object, Object>> f2Score = metrics.fMeasureByThreshold(2.0).toJavaRDD();
System.out.println("F2 Score by threshold: " + f2Score.toArray());

// Precision-recall curve
JavaRDD<Tuple2<Object, Object>> prc = metrics.pr().toJavaRDD();
System.out.println("Precision-recall curve: " + prc.toArray());

// Thresholds
JavaRDD<Double> thresholds = precision.map(
  new Function<Tuple2<Object, Object>, Double>() {
    public Double call(Tuple2<Object, Object> t) {
      return new Double(t._1().toString());
    }
  }
);

// ROC Curve
JavaRDD<Tuple2<Object, Object>> roc = metrics.roc().toJavaRDD();
System.out.println("ROC curve: " + roc.toArray());

// AUPRC
System.out.println("Area under precision-recall curve = " + metrics.areaUnderPR());

// AUROC
System.out.println("Area under ROC = " + metrics.areaUnderROC());

// Save and load model
model.save(sc, "target/tmp/LogisticRegressionModel");
LogisticRegressionModel sameModel = LogisticRegressionModel.load(sc,
  "target/tmp/LogisticRegressionModel");

多分类

examples/src/main/java/org/apache/spark/examples/mllib/JavaMulticlassClassificationMetricsExample.java


String path = "data/mllib/sample_multiclass_classification_data.txt";
JavaRDD<LabeledPoint> data = MLUtils.loadLibSVMFile(sc, path).toJavaRDD();

// Split initial RDD into two... [60% training data, 40% testing data].
JavaRDD<LabeledPoint>[] splits = data.randomSplit(new double[]{0.6, 0.4}, 11L);
JavaRDD<LabeledPoint> training = splits[0].cache();
JavaRDD<LabeledPoint> test = splits[1];

// Run training algorithm to build the model.
final LogisticRegressionModel model = new LogisticRegressionWithLBFGS()
  .setNumClasses(3)
  .run(training.rdd());

// Compute raw scores on the test set.
JavaRDD<Tuple2<Object, Object>> predictionAndLabels = test.map(
  new Function<LabeledPoint, Tuple2<Object, Object>>() {
    public Tuple2<Object, Object> call(LabeledPoint p) {
      Double prediction = model.predict(p.features());
      return new Tuple2<Object, Object>(prediction, p.label());
    }
  }
);

// Get evaluation metrics.
MulticlassMetrics metrics = new MulticlassMetrics(predictionAndLabels.rdd());

// Confusion matrix
Matrix confusion = metrics.confusionMatrix();
System.out.println("Confusion matrix: \n" + confusion);

// Overall statistics
System.out.println("Precision = " + metrics.precision());
System.out.println("Recall = " + metrics.recall());
System.out.println("F1 Score = " + metrics.fMeasure());

// Stats by labels
for (int i = 0; i < metrics.labels().length; i++) {
  System.out.format("Class %f precision = %f\n", metrics.labels()[i],metrics.precision
    (metrics.labels()[i]));
  System.out.format("Class %f recall = %f\n", metrics.labels()[i], metrics.recall(metrics
    .labels()[i]));
  System.out.format("Class %f F1 score = %f\n", metrics.labels()[i], metrics.fMeasure
    (metrics.labels()[i]));
}

//Weighted stats
System.out.format("Weighted precision = %f\n", metrics.weightedPrecision());
System.out.format("Weighted recall = %f\n", metrics.weightedRecall());
System.out.format("Weighted F1 score = %f\n", metrics.weightedFMeasure());
System.out.format("Weighted false positive rate = %f\n", metrics.weightedFalsePositiveRate());

// Save and load model
model.save(sc, "target/tmp/LogisticRegressionModel");
LogisticRegressionModel sameModel = LogisticRegressionModel.load(sc,
  "target/tmp/LogisticRegressionModel");

多标签分类

examples/src/main/java/org/apache/spark/examples/mllib/JavaMultiLabelClassificationMetricsExample.java

List<Tuple2<double[], double[]>> data = Arrays.asList(
  new Tuple2<double[], double[]>(new double[]{0.0, 1.0}, new double[]{0.0, 2.0}),
  new Tuple2<double[], double[]>(new double[]{0.0, 2.0}, new double[]{0.0, 1.0}),
  new Tuple2<double[], double[]>(new double[]{}, new double[]{0.0}),
  new Tuple2<double[], double[]>(new double[]{2.0}, new double[]{2.0}),
  new Tuple2<double[], double[]>(new double[]{2.0, 0.0}, new double[]{2.0, 0.0}),
  new Tuple2<double[], double[]>(new double[]{0.0, 1.0, 2.0}, new double[]{0.0, 1.0}),
  new Tuple2<double[], double[]>(new double[]{1.0}, new double[]{1.0, 2.0})
);
JavaRDD<Tuple2<double[], double[]>> scoreAndLabels = sc.parallelize(data);

// Instantiate metrics object
MultilabelMetrics metrics = new MultilabelMetrics(scoreAndLabels.rdd());

// Summary stats
System.out.format("Recall = %f\n", metrics.recall());
System.out.format("Precision = %f\n", metrics.precision());
System.out.format("F1 measure = %f\n", metrics.f1Measure());
System.out.format("Accuracy = %f\n", metrics.accuracy());

// Stats by labels
for (int i = 0; i < metrics.labels().length - 1; i++) {
  System.out.format("Class %1.1f precision = %f\n", metrics.labels()[i], metrics.precision
    (metrics.labels()[i]));
  System.out.format("Class %1.1f recall = %f\n", metrics.labels()[i], metrics.recall(metrics
    .labels()[i]));
  System.out.format("Class %1.1f F1 score = %f\n", metrics.labels()[i], metrics.f1Measure
    (metrics.labels()[i]));
}

// Micro stats
System.out.format("Micro recall = %f\n", metrics.microRecall());
System.out.format("Micro precision = %f\n", metrics.microPrecision());
System.out.format("Micro F1 measure = %f\n", metrics.microF1Measure());

// Hamming loss
System.out.format("Hamming loss = %f\n", metrics.hammingLoss());

// Subset accuracy
System.out.format("Subset accuracy = %f\n", metrics.subsetAccuracy());

Ranking系统

examples/src/main/java/org/apache/spark/examples/mllib/JavaRankingMetricsExample.java

String path = "data/mllib/sample_movielens_data.txt";
JavaRDD<String> data = sc.textFile(path);
JavaRDD<Rating> ratings = data.map(
  new Function<String, Rating>() {
    public Rating call(String line) {
      String[] parts = line.split("::");
        return new Rating(Integer.parseInt(parts[0]), Integer.parseInt(parts[1]), Double
          .parseDouble(parts[2]) - 2.5);
    }
  }
);
ratings.cache();

// Train an ALS model
final MatrixFactorizationModel model = ALS.train(JavaRDD.toRDD(ratings), 10, 10, 0.01);

// Get top 10 recommendations for every user and scale ratings from 0 to 1
JavaRDD<Tuple2<Object, Rating[]>> userRecs = model.recommendProductsForUsers(10).toJavaRDD();
JavaRDD<Tuple2<Object, Rating[]>> userRecsScaled = userRecs.map(
  new Function<Tuple2<Object, Rating[]>, Tuple2<Object, Rating[]>>() {
    public Tuple2<Object, Rating[]> call(Tuple2<Object, Rating[]> t) {
      Rating[] scaledRatings = new Rating[t._2().length];
      for (int i = 0; i < scaledRatings.length; i++) {
        double newRating = Math.max(Math.min(t._2()[i].rating(), 1.0), 0.0);
        scaledRatings[i] = new Rating(t._2()[i].user(), t._2()[i].product(), newRating);
      }
      return new Tuple2<Object, Rating[]>(t._1(), scaledRatings);
    }
  }
);
JavaPairRDD<Object, Rating[]> userRecommended = JavaPairRDD.fromJavaRDD(userRecsScaled);

// Map ratings to 1 or 0, 1 indicating a movie that should be recommended
JavaRDD<Rating> binarizedRatings = ratings.map(
  new Function<Rating, Rating>() {
    public Rating call(Rating r) {
      double binaryRating;
      if (r.rating() > 0.0) {
        binaryRating = 1.0;
      } else {
        binaryRating = 0.0;
      }
      return new Rating(r.user(), r.product(), binaryRating);
    }
  }
);

// Group ratings by common user
JavaPairRDD<Object, Iterable<Rating>> userMovies = binarizedRatings.groupBy(
  new Function<Rating, Object>() {
    public Object call(Rating r) {
      return r.user();
    }
  }
);

// Get true relevant documents from all user ratings
JavaPairRDD<Object, List<Integer>> userMoviesList = userMovies.mapValues(
  new Function<Iterable<Rating>, List<Integer>>() {
    public List<Integer> call(Iterable<Rating> docs) {
      List<Integer> products = new ArrayList<Integer>();
      for (Rating r : docs) {
        if (r.rating() > 0.0) {
          products.add(r.product());
        }
      }
      return products;
    }
  }
);

// Extract the product id from each recommendation
JavaPairRDD<Object, List<Integer>> userRecommendedList = userRecommended.mapValues(
  new Function<Rating[], List<Integer>>() {
    public List<Integer> call(Rating[] docs) {
      List<Integer> products = new ArrayList<Integer>();
      for (Rating r : docs) {
        products.add(r.product());
      }
      return products;
    }
  }
);
JavaRDD<Tuple2<List<Integer>, List<Integer>>> relevantDocs = userMoviesList.join
  (userRecommendedList).values();

// Instantiate the metrics object
RankingMetrics metrics = RankingMetrics.of(relevantDocs);

// Precision and NDCG at k
Integer[] kVector = {1, 3, 5};
for (Integer k : kVector) {
  System.out.format("Precision at %d = %f\n", k, metrics.precisionAt(k));
  System.out.format("NDCG at %d = %f\n", k, metrics.ndcgAt(k));
}

// Mean average precision
System.out.format("Mean average precision = %f\n", metrics.meanAveragePrecision());

// Evaluate the model using numerical ratings and regression metrics
JavaRDD<Tuple2<Object, Object>> userProducts = ratings.map(
  new Function<Rating, Tuple2<Object, Object>>() {
    public Tuple2<Object, Object> call(Rating r) {
      return new Tuple2<Object, Object>(r.user(), r.product());
    }
  }
);
JavaPairRDD<Tuple2<Integer, Integer>, Object> predictions = JavaPairRDD.fromJavaRDD(
  model.predict(JavaRDD.toRDD(userProducts)).toJavaRDD().map(
    new Function<Rating, Tuple2<Tuple2<Integer, Integer>, Object>>() {
      public Tuple2<Tuple2<Integer, Integer>, Object> call(Rating r) {
        return new Tuple2<Tuple2<Integer, Integer>, Object>(
          new Tuple2<Integer, Integer>(r.user(), r.product()), r.rating());
      }
    }
  ));
JavaRDD<Tuple2<Object, Object>> ratesAndPreds =
  JavaPairRDD.fromJavaRDD(ratings.map(
    new Function<Rating, Tuple2<Tuple2<Integer, Integer>, Object>>() {
      public Tuple2<Tuple2<Integer, Integer>, Object> call(Rating r) {
        return new Tuple2<Tuple2<Integer, Integer>, Object>(
          new Tuple2<Integer, Integer>(r.user(), r.product()), r.rating());
      }
    }
  )).join(predictions).values();

// Create regression metrics object
RegressionMetrics regressionMetrics = new RegressionMetrics(ratesAndPreds.rdd());

// Root mean squared error
System.out.format("RMSE = %f\n", regressionMetrics.rootMeanSquaredError());

// R-squared
System.out.format("R-squared = %f\n", regressionMetrics.r2());

回归模型评估

  • Mean Squared Error (MSE)
  • Root Mean Squared Error (RMSE)
  • Mean Absoloute Error (MAE)
  • Coefficient of Determination (R2)

examples/src/main/java/org/apache/spark/examples/mllib/JavaRegressionMetricsExample.java

// Load and parse the data
String path = "data/mllib/sample_linear_regression_data.txt";
JavaRDD<String> data = sc.textFile(path);
JavaRDD<LabeledPoint> parsedData = data.map(
  new Function<String, LabeledPoint>() {
    public LabeledPoint call(String line) {
      String[] parts = line.split(" ");
      double[] v = new double[parts.length - 1];
      for (int i = 1; i < parts.length - 1; i++)
        v[i - 1] = Double.parseDouble(parts[i].split(":")[1]);
      return new LabeledPoint(Double.parseDouble(parts[0]), Vectors.dense(v));
    }
  }
);
parsedData.cache();

// Building the model
int numIterations = 100;
final LinearRegressionModel model = LinearRegressionWithSGD.train(JavaRDD.toRDD(parsedData),
  numIterations);

// Evaluate model on training examples and compute training error
JavaRDD<Tuple2<Object, Object>> valuesAndPreds = parsedData.map(
  new Function<LabeledPoint, Tuple2<Object, Object>>() {
    public Tuple2<Object, Object> call(LabeledPoint point) {
      double prediction = model.predict(point.features());
      return new Tuple2<Object, Object>(prediction, point.label());
    }
  }
);

// Instantiate metrics object
RegressionMetrics metrics = new RegressionMetrics(valuesAndPreds.rdd());

// Squared error
System.out.format("MSE = %f\n", metrics.meanSquaredError());
System.out.format("RMSE = %f\n", metrics.rootMeanSquaredError());

// R-squared
System.out.format("R Squared = %f\n", metrics.r2());

// Mean absolute error
System.out.format("MAE = %f\n", metrics.meanAbsoluteError());

// Explained variance
System.out.format("Explained Variance = %f\n", metrics.explainedVariance());

// Save and load model
model.save(sc.sc(), "target/tmp/LogisticRegressionModel");
LinearRegressionModel sameModel = LinearRegressionModel.load(sc.sc(),
  "target/tmp/LogisticRegressionModel");

1.10 预测模型标记语言模型导出

spark.mllib model PMML model
KMeansModel ClusteringModel
LinearRegressionModel RegressionModel (functionName="regression")
RidgeRegressionModel RegressionModel (functionName="regression")
LassoModel RegressionModel (functionName="regression")
SVMModel RegressionModel (functionName="classification" normalizationMethod="none")
Binary LogisticRegressionModel RegressionModel (functionName="classification" normalizationMethod="logit")
// Load and parse the data
val data = sc.textFile("data/mllib/kmeans_data.txt")
val parsedData = data.map(s => Vectors.dense(s.split(' ').map(_.toDouble))).cache()

// Cluster the data into two classes using KMeans
val numClusters = 2
val numIterations = 20
val clusters = KMeans.train(parsedData, numClusters, numIterations)

// Export to PMML
println("PMML Model:\n" + clusters.toPMML)
As well as exporting the PMML model to a String (model.toPMML as in the example above), you can export the PMML model to other formats:

// Export the model to a String in PMML format
clusters.toPMML

// Export the model to a local file in PMML format
clusters.toPMML("/tmp/kmeans.xml")

// Export the model to a directory on a distributed file system in PMML format
clusters.toPMML(sc,"/tmp/kmeans")

// Export the model to the OutputStream in PMML format
clusters.toPMML(System.out)

2. spark.ml:机器学习流水线高级API

2.1 概览

  • DataFrame
  • Transformer transform()
  • Estimator fit()

ml-Pipeline

ml-PipelineModel

Estimator, Transformer, and Param

// Prepare training data.
// We use LabeledPoint, which is a JavaBean.  Spark SQL can convert RDDs of JavaBeans
// into DataFrames, where it uses the bean metadata to infer the schema.
DataFrame training = sqlContext.createDataFrame(Arrays.asList(
  new LabeledPoint(1.0, Vectors.dense(0.0, 1.1, 0.1)),
  new LabeledPoint(0.0, Vectors.dense(2.0, 1.0, -1.0)),
  new LabeledPoint(0.0, Vectors.dense(2.0, 1.3, 1.0)),
  new LabeledPoint(1.0, Vectors.dense(0.0, 1.2, -0.5))
), LabeledPoint.class);

// Create a LogisticRegression instance.  This instance is an Estimator.
LogisticRegression lr = new LogisticRegression();
// Print out the parameters, documentation, and any default values.
System.out.println("LogisticRegression parameters:\n" + lr.explainParams() + "\n");

// We may set parameters using setter methods.
lr.setMaxIter(10)
  .setRegParam(0.01);

// Learn a LogisticRegression model.  This uses the parameters stored in lr.
LogisticRegressionModel model1 = lr.fit(training);
// Since model1 is a Model (i.e., a Transformer produced by an Estimator),
// we can view the parameters it used during fit().
// This prints the parameter (name: value) pairs, where names are unique IDs for this
// LogisticRegression instance.
System.out.println("Model 1 was fit using parameters: " + model1.parent().extractParamMap());

// We may alternatively specify parameters using a ParamMap.
ParamMap paramMap = new ParamMap()
  .put(lr.maxIter().w(20)) // Specify 1 Param.
  .put(lr.maxIter(), 30) // This overwrites the original maxIter.
  .put(lr.regParam().w(0.1), lr.threshold().w(0.55)); // Specify multiple Params.

// One can also combine ParamMaps.
ParamMap paramMap2 = new ParamMap()
  .put(lr.probabilityCol().w("myProbability")); // Change output column name
ParamMap paramMapCombined = paramMap.$plus$plus(paramMap2);

// Now learn a new model using the paramMapCombined parameters.
// paramMapCombined overrides all parameters set earlier via lr.set* methods.
LogisticRegressionModel model2 = lr.fit(training, paramMapCombined);
System.out.println("Model 2 was fit using parameters: " + model2.parent().extractParamMap());

// Prepare test documents.
DataFrame test = sqlContext.createDataFrame(Arrays.asList(
  new LabeledPoint(1.0, Vectors.dense(-1.0, 1.5, 1.3)),
  new LabeledPoint(0.0, Vectors.dense(3.0, 2.0, -0.1)),
  new LabeledPoint(1.0, Vectors.dense(0.0, 2.2, -1.5))
), LabeledPoint.class);

// Make predictions on test documents using the Transformer.transform() method.
// LogisticRegression.transform will only use the 'features' column.
// Note that model2.transform() outputs a 'myProbability' column instead of the usual
// 'probability' column since we renamed the lr.probabilityCol parameter previously.
DataFrame results = model2.transform(test);
for (Row r: results.select("features", "label", "myProbability", "prediction").collect()) {
  System.out.println("(" + r.get(0) + ", " + r.get(1) + ") -> prob=" + r.get(2)
      + ", prediction=" + r.get(3));
}

Pipeline

// Labeled and unlabeled instance types.
// Spark SQL can infer schema from Java Beans.
public class Document implements Serializable {
  private long id;
  private String text;

  public Document(long id, String text) {
    this.id = id;
    this.text = text;
  }

  public long getId() { return this.id; }
  public void setId(long id) { this.id = id; }

  public String getText() { return this.text; }
  public void setText(String text) { this.text = text; }
}

public class LabeledDocument extends Document implements Serializable {
  private double label;

  public LabeledDocument(long id, String text, double label) {
    super(id, text);
    this.label = label;
  }

  public double getLabel() { return this.label; }
  public void setLabel(double label) { this.label = label; }
}

// Prepare training documents, which are labeled.
DataFrame training = sqlContext.createDataFrame(Arrays.asList(
  new LabeledDocument(0L, "a b c d e spark", 1.0),
  new LabeledDocument(1L, "b d", 0.0),
  new LabeledDocument(2L, "spark f g h", 1.0),
  new LabeledDocument(3L, "hadoop mapreduce", 0.0)
), LabeledDocument.class);

// Configure an ML pipeline, which consists of three stages: tokenizer, hashingTF, and lr.
Tokenizer tokenizer = new Tokenizer()
  .setInputCol("text")
  .setOutputCol("words");
HashingTF hashingTF = new HashingTF()
  .setNumFeatures(1000)
  .setInputCol(tokenizer.getOutputCol())
  .setOutputCol("features");
LogisticRegression lr = new LogisticRegression()
  .setMaxIter(10)
  .setRegParam(0.01);
Pipeline pipeline = new Pipeline()
  .setStages(new PipelineStage[] {tokenizer, hashingTF, lr});

// Fit the pipeline to training documents.
PipelineModel model = pipeline.fit(training);

// Prepare test documents, which are unlabeled.
DataFrame test = sqlContext.createDataFrame(Arrays.asList(
  new Document(4L, "spark i j k"),
  new Document(5L, "l m n"),
  new Document(6L, "mapreduce spark"),
  new Document(7L, "apache hadoop")
), Document.class);

// Make predictions on test documents.
DataFrame predictions = model.transform(test);
for (Row r: predictions.select("id", "text", "probability", "prediction").collect()) {
  System.out.println("(" + r.get(0) + ", " + r.get(1) + ") --> prob=" + r.get(2)
      + ", prediction=" + r.get(3));
}

模型选择


// Labeled and unlabeled instance types.
// Spark SQL can infer schema from Java Beans.
public class Document implements Serializable {
  private long id;
  private String text;

  public Document(long id, String text) {
    this.id = id;
    this.text = text;
  }

  public long getId() { return this.id; }
  public void setId(long id) { this.id = id; }

  public String getText() { return this.text; }
  public void setText(String text) { this.text = text; }
}

public class LabeledDocument extends Document implements Serializable {
  private double label;

  public LabeledDocument(long id, String text, double label) {
    super(id, text);
    this.label = label;
  }

  public double getLabel() { return this.label; }
  public void setLabel(double label) { this.label = label; }
}


// Prepare training documents, which are labeled.
DataFrame training = sqlContext.createDataFrame(Arrays.asList(
  new LabeledDocument(0L, "a b c d e spark", 1.0),
  new LabeledDocument(1L, "b d", 0.0),
  new LabeledDocument(2L, "spark f g h", 1.0),
  new LabeledDocument(3L, "hadoop mapreduce", 0.0),
  new LabeledDocument(4L, "b spark who", 1.0),
  new LabeledDocument(5L, "g d a y", 0.0),
  new LabeledDocument(6L, "spark fly", 1.0),
  new LabeledDocument(7L, "was mapreduce", 0.0),
  new LabeledDocument(8L, "e spark program", 1.0),
  new LabeledDocument(9L, "a e c l", 0.0),
  new LabeledDocument(10L, "spark compile", 1.0),
  new LabeledDocument(11L, "hadoop software", 0.0)
), LabeledDocument.class);

// Configure an ML pipeline, which consists of three stages: tokenizer, hashingTF, and lr.
Tokenizer tokenizer = new Tokenizer()
  .setInputCol("text")
  .setOutputCol("words");
HashingTF hashingTF = new HashingTF()
  .setNumFeatures(1000)
  .setInputCol(tokenizer.getOutputCol())
  .setOutputCol("features");
LogisticRegression lr = new LogisticRegression()
  .setMaxIter(10)
  .setRegParam(0.01);
Pipeline pipeline = new Pipeline()
  .setStages(new PipelineStage[] {tokenizer, hashingTF, lr});

// We use a ParamGridBuilder to construct a grid of parameters to search over.
// With 3 values for hashingTF.numFeatures and 2 values for lr.regParam,
// this grid will have 3 x 2 = 6 parameter settings for CrossValidator to choose from.
ParamMap[] paramGrid = new ParamGridBuilder()
    .addGrid(hashingTF.numFeatures(), new int[]{10, 100, 1000})
    .addGrid(lr.regParam(), new double[]{0.1, 0.01})
    .build();

// We now treat the Pipeline as an Estimator, wrapping it in a CrossValidator instance.
// This will allow us to jointly choose parameters for all Pipeline stages.
// A CrossValidator requires an Estimator, a set of Estimator ParamMaps, and an Evaluator.
// Note that the evaluator here is a BinaryClassificationEvaluator and its default metric
// is areaUnderROC.
CrossValidator cv = new CrossValidator()
  .setEstimator(pipeline)
  .setEvaluator(new BinaryClassificationEvaluator())
  .setEstimatorParamMaps(paramGrid)
  .setNumFolds(2); // Use 3+ in practice

// Run cross-validation, and choose the best set of parameters.
CrossValidatorModel cvModel = cv.fit(training);

// Prepare test documents, which are unlabeled.
DataFrame test = sqlContext.createDataFrame(Arrays.asList(
  new Document(4L, "spark i j k"),
  new Document(5L, "l m n"),
  new Document(6L, "mapreduce spark"),
  new Document(7L, "apache hadoop")
), Document.class);

// Make predictions on test documents. cvModel uses the best model found (lrModel).
DataFrame predictions = cvModel.transform(test);
for (Row r: predictions.select("id", "text", "probability", "prediction").collect()) {
  System.out.println("(" + r.get(0) + ", " + r.get(1) + ") --> prob=" + r.get(2)
      + ", prediction=" + r.get(3));
}


DataFrame data = jsql.read().format("libsvm").load("data/mllib/sample_libsvm_data.txt");

// Prepare training and test data.
DataFrame[] splits = data.randomSplit(new double[] {0.9, 0.1}, 12345);
DataFrame training = splits[0];
DataFrame test = splits[1];

LinearRegression lr = new LinearRegression();

// We use a ParamGridBuilder to construct a grid of parameters to search over.
// TrainValidationSplit will try all combinations of values and determine best model using
// the evaluator.
ParamMap[] paramGrid = new ParamGridBuilder()
  .addGrid(lr.regParam(), new double[] {0.1, 0.01})
  .addGrid(lr.fitIntercept())
  .addGrid(lr.elasticNetParam(), new double[] {0.0, 0.5, 1.0})
  .build();

// In this case the estimator is simply the linear regression.
// A TrainValidationSplit requires an Estimator, a set of Estimator ParamMaps, and an Evaluator.
TrainValidationSplit trainValidationSplit = new TrainValidationSplit()
  .setEstimator(lr)
  .setEvaluator(new RegressionEvaluator())
  .setEstimatorParamMaps(paramGrid)
  .setTrainRatio(0.8); // 80% for training and the remaining 20% for validation

// Run train validation split, and choose the best set of parameters.
TrainValidationSplitModel model = trainValidationSplit.fit(training);

// Make predictions on test data. model is the model with combination of parameters
// that performed best.
model.transform(test)
  .select("features", "label", "prediction")
  .show();

2.2 特征提取、转换和选择

http://spark.apache.org/docs/latest/ml-features.html

2.3 分类和回归

http://spark.apache.org/docs/latest/ml-classification-regression.html

2.4 聚类

http://spark.apache.org/docs/latest/ml-clustering.html

相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
目录
相关文章
|
6月前
|
机器学习/深度学习 分布式计算 算法
Spark MLlib简介与机器学习流程
Spark MLlib简介与机器学习流程
|
存储 分布式计算 并行计算
Spark GraphX 快速入门
Spark GraphX 快速入门
311 0
Spark GraphX 快速入门
|
机器学习/深度学习 分布式计算 算法
Spark机器学习库(MLlib)指南之简介及基础统计
Spark机器学习库(MLlib)指南之简介及基础统计
332 0
|
机器学习/深度学习 存储 分布式计算
机器学习 spark.mllib 数据类型学习
机器学习 spark.mllib 数据类型学习MLLib提供了一序列基本数据类型以支持底层的机器学习算法。主要的数据内心包括:本地向量、标注点(Labeled Point)、本地矩阵、分布式矩阵等。单机模式存储的本地向量与矩阵,以及基于一个或多个RDD的分布式矩阵。其中本地向量与本地矩阵作为公共接口提供简单数据模型,底层的线性代数操作由Breeze库和jblas库提供。标注点类型用来表示监督学习(Supervised Learning)中的一个训练样本。
99 0
|
存储 缓存 分布式计算
Spark—GraphX编程指南
GraphX 是新的图形和图像并行计算的Spark API。从整理上看,GraphX 通过引入 弹性分布式属性图(Resilient Distributed Property Graph)继承了Spark RDD:一个将有效信息放在顶点和边的有向多重图。为了支持图形计算,GraphX 公开了一组基本的运算(例如,subgraph,joinVertices和mapReduceTriplets),以及在一个优化后的 PregelAPI的变形。此外,GraphX 包括越来越多的图算法和 builder 构造器,以简化图形分析任务。
555 0
Spark—GraphX编程指南
|
机器学习/深度学习 分布式计算 算法
初识 Spark MLlib 机器学习
初识 Spark MLlib 机器学习
114 0
|
存储 机器学习/深度学习 分布式计算
基于Spark的机器学习实践 (二) - 初识MLlib(下)
基于Spark的机器学习实践 (二) - 初识MLlib(下)
198 0
基于Spark的机器学习实践 (二) - 初识MLlib(下)
|
机器学习/深度学习 SQL 分布式计算
基于Spark的机器学习实践 (二) - 初识MLlib(上)
基于Spark的机器学习实践 (二) - 初识MLlib(上)
342 0
基于Spark的机器学习实践 (二) - 初识MLlib(上)
|
分布式计算 算法 搜索推荐
|
机器学习/深度学习 存储 算法
基于Spark的机器学习实践 (二) - 初识MLlib
1 MLlib概述 1.1 MLlib 介绍 ◆ 是基于Spark core的机器学习库,具有Spark的优点 ◆ 底层计算经过优化,比常规编码效率往往要高 ◆ 实现了多种机器学习算法,可以进行模型训练及预测 1.2 Spark MLlib实现的算法 ◆ 逻辑回归 朴素贝叶斯 线性回归 SVM 决策树 LDA 矩阵分解 1.3 Spark MLlib官方介绍 1.3.1 搜索官方文档 1.3.2 阅读文档 - 机器学习库(MLlib)指南 简介 MLlib是Spark的机器学习(ML)库。
2534 0
下一篇
无影云桌面