基于Spark的机器学习实践 (二) - 初识MLlib(下)

简介: 基于Spark的机器学习实践 (二) - 初识MLlib(下)

2 MLlib的数据结构

2.1 本地向量(Local vector)

具有整数类型和基于0的索引和双类型值

本地向量的基类是Vector,我们提供了两个实现:DenseVectorSparseVector

◆ 本地向量是存储在本地节点上的,其基本数据类型是Vector.

其有两个子集,分别是密集的与稀疏的

  • 密集向量由表示其条目值的双数组支持
  • 而稀疏向量由两个并行数组支持:索引和值


我们一般使用Vectors工厂类来生成

例如:


◆ Vectors.dense(1.0,2.0,3.0) 主要使用稠密的

◆ Vectors.sparse(3,(0,1),(1,2),(2,3)) 稀疏的了解即可


向量(1.00.03.0)可以密集格式表示为1.00.03.0,或以稀疏格式表示为(3,02,1.03.0),其中3是矢量的大小。

2.2 标签数据(Labeled point)

与标签/响应相关联的局部矢量,密集或稀疏

在MLlib中,用于监督学习算法。 我们使用双重存储标签,所以我们可以在回归和分类中使用标记点

对于二进制分类,标签应为0(负)或1(正)

对于多类分类,标签应该是从零开始的类索引:0,1,2,…


标记点由事例类 LabeledPoint 表示


◆ 我们在前面介绍过"监督学习”, 知道监督学习是(x,y)数据形式,其中这个y就是标签,X是特征向量

标签数据也是一样,我们看一下这个代码

LabeledPoint(1.0,Vectors.dense(1.0,2.0,3.0))

2.3 本地矩阵

本地矩阵具有整数类型的行和列索引和双类型值,存储在单个机器上。 MLlib支持密集矩阵,其入口值以列主序列存储在单个双阵列中,稀疏矩阵的非零入口值以列主要顺序存储在压缩稀疏列(CSC)格式中


与向量相似,本地矩阵类型为Matrix , 分为稠密与稀疏两种类型。同样使

用工厂方法Matrices来生成。但是要注意,MLlib的矩阵是按列存储的。

例如下面创建一个3x3的单位矩阵:

Matrices.dense(3,3,Array(1,0,0,0,1,0,0,0,1))

类似地,稀疏矩阵的创建方法

Matrices.sparse(3,3,Array(0,1,2,3),Array(0,1,2),Array(1,1,1))

2.4 分布式矩阵

◆ 把一个矩数据分布式存储到多个RDD中

将分布式矩阵进行数据转换需要全局的shuffle函数

最基本的分布式矩阵是RowMatrix.


分布式矩阵具有长类型的行和列索引和双类型值,分布式存储在一个或多个RDD中。选择正确的格式来存储大型和分布式矩阵是非常重要的。将分布式矩阵转换为不同的格式可能需要全局shuffle,这是相当昂贵的。到目前为止已经实现了四种类型的分布式矩阵。


基本类型称为RowMatrix。 RowMatrix是没有有意义的行索引的行向分布式矩阵,例如特征向量的集合。它由其行的RDD支持,其中每行是局部向量。我们假设RowMatrix的列数不是很大,因此单个本地向量可以合理地传递给驱动程序,也可以使用单个节点进行存储/操作。 IndexedRowMatrix与RowMatrix类似,但具有行索引,可用于标识行和执行连接。 CoordinateMatrix是以坐标 list(COO) 格式存储的分布式矩阵,由其条目的RDD支持。 BlockMatrix是由MatrixBlock的RDD支持的分布式矩阵,它是(Int,Int,Matrix)的元组。


2.5 分布式数据集

◆ RDD Dataset DataFrame都是Spark的分布式数据集的数据格式

三者在一定程度上可以互相转化,有各自的适用范围

其中RDD是最为基础与简单的一种数据集形式


2.5.1 RDD

◆ RDD(Resilient Distributed Datasets),弹性分布式数据集,是Spark中结构最简单,也是最常用的一类数据集形 式。

可以理解为把输入数据进行简单的封装之后形成的对内存数据的抽象。

image.png

2.5.2 Dataset

◆ 与RDD分行存储,没有列的概念不同,Dataset 引入了列的概念,这一点类似于一个CSV文件结构。类似于一个简单的2维表

image.png

2.5.3 DataFrame

DataFrame结构与Dataset 是类似的,都引|入了列的概念

与Dataset不同的是,DataFrame中的毎一-行被再次封装刃Row的対象。需要通过该対象的方法来获取到具体的值.

3 MLlib与ml

3.1 Spark提供的机器学习算法

◆ 通用算法

分类,回归,聚类等

◆ 特征工程类

降维,转换,选择,特征提取等

◆数学工具

概率统计 ,矩阵运算等

◆ pipeline 等

3.2 MLlib与ml的区别

MLlib采用RDD形式的数据结构,而ml使用DataFrame的结构.

◆ Spark官方希望 用ml逐步替换MLlib

◆ 教程中两者兼顾

如无特殊指明,MLlib指代Spark的机器学习组件

4 MLlib的应用场景

4.1 海量数据的分析与挖掘

◆ 例如对海量的房屋出租,出售信息进行数据挖掘,预测房价价格,租金

◆ 典型数据集:波士顿房价数据集

◆ 主要用到传统的数据挖掘算法,例如使用回归算法

4.2 大数据机器学习系统

◆ 例如自然语言处理类的系统,推荐系统等

◆ 推荐系统,需要实时进行数据的收集,统计,任务调度,定期更新训练模型

◆ 核心实现: Spark Streaming +MLlib

目录
相关文章
|
4月前
|
分布式计算 Java Serverless
EMR Serverless Spark 实践教程 | 通过 spark-submit 命令行工具提交 Spark 任务
本文以 ECS 连接 EMR Serverless Spark 为例,介绍如何通过 EMR Serverless spark-submit 命令行工具进行 Spark 任务开发。
416 7
EMR Serverless Spark 实践教程 | 通过 spark-submit 命令行工具提交 Spark 任务
|
3月前
|
分布式计算 Serverless 数据处理
EMR Serverless Spark 实践教程 | 通过 Apache Airflow 使用 Livy Operator 提交任务
Apache Airflow 是一个强大的工作流程自动化和调度工具,它允许开发者编排、计划和监控数据管道的执行。EMR Serverless Spark 为处理大规模数据处理任务提供了一个无服务器计算环境。本文为您介绍如何通过 Apache Airflow 的 Livy Operator 实现自动化地向 EMR Serverless Spark 提交任务,以实现任务调度和执行的自动化,帮助您更有效地管理数据处理任务。
214 0
|
4月前
|
分布式计算 Hadoop Serverless
数据处理的艺术:EMR Serverless Spark实践及应用体验
阿里云EMR Serverless Spark是基于Spark的全托管大数据处理平台,融合云原生弹性与自动化,提供任务全生命周期管理,让数据工程师专注数据分析。它内置高性能Fusion Engine,性能比开源Spark提升200%,并有成本优化的Celeborn服务。支持计算存储分离、OSS-HDFS兼容、DLF元数据管理,实现一站式的开发体验和Serverless资源管理。适用于数据报表、科学项目等场景,简化开发与运维流程。用户可通过阿里云控制台快速配置和体验EMR Serverless Spark服务。
|
5月前
|
分布式计算 运维 Serverless
通过Serverless Spark提交PySpark流任务的实践体验
EMR Serverless Spark服务是阿里云推出的一种全托管、一站式的数据计算平台,旨在简化大数据计算的工作流程,让用户更加专注于数据分析和价值提炼,而非基础设施的管理和运维。下面就跟我一起通过Serverless Spark提交PySpark流任务吧。
267 1
|
5月前
|
分布式计算 Spark 大数据
深入探究Apache Spark在大数据处理中的实践应用
【6月更文挑战第2天】Apache Spark是流行的开源大数据处理框架,以其内存计算速度和低延迟脱颖而出。本文涵盖Spark概述、核心组件(包括Spark Core、SQL、Streaming和MLlib)及其在数据预处理、批处理分析、交互式查询、实时处理和机器学习中的应用。通过理解Spark内部机制和实践应用,可提升大数据处理效率,发挥其在各行业的潜力。
|
6月前
|
机器学习/深度学习 数据采集 分布式计算
【机器学习】Spark ML 对数据进行规范化预处理 StandardScaler 与向量拆分
标准化Scaler是数据预处理技术,用于将特征值映射到均值0、方差1的标准正态分布,以消除不同尺度特征的影响,提升模型稳定性和精度。Spark ML中的StandardScaler实现此功能,通过`.setInputCol`、`.setOutputCol`等方法配置并应用到DataFrame数据。示例展示了如何在Spark中使用StandardScaler进行数据规范化,包括创建SparkSession,构建DataFrame,使用VectorAssembler和StandardScaler,以及将向量拆分为列。规范化有助于降低特征重要性,提高模型训练速度和计算效率。
126 6
|
6月前
|
机器学习/深度学习 分布式计算 算法
【机器学习】Spark ML 对数据特征进行 One-Hot 编码
One-Hot 编码是机器学习中将离散特征转换为数值表示的方法,每个取值映射为一个二进制向量,常用于避免特征间大小关系影响模型。Spark ML 提供 OneHotEncoder 进行编码,输入输出列可通过 `inputCol` 和 `outputCol` 参数设置。在示例中,先用 StringIndexer 对类别特征编码,再用 OneHotEncoder 转换,最后展示编码结果。注意 One-Hot 编码可能导致高维问题,可结合实际情况选择编码方式。
83 6
|
5月前
|
机器学习/深度学习 分布式计算 API
技术好文:Spark机器学习笔记一
技术好文:Spark机器学习笔记一
42 0
|
6月前
|
分布式计算 Shell 开发工具
Spark编程实验二:RDD编程初级实践
Spark编程实验二:RDD编程初级实践
266 1
|
6月前
|
机器学习/深度学习 分布式计算 算法
使用Spark进行机器学习
【5月更文挑战第2天】使用Spark进行机器学习
73 2

热门文章

最新文章

下一篇
无影云桌面