OpenAI发布新强化学习算法:近端策略优化

简介:
本文来自AI新媒体量子位(QbitAI)

OpenAI今天发布一类新的强化学习算法:近端策略优化(Proximal Policy Optimization,PPO)。因为易于使用和表现良好,PPO已经成为OpenAI默认的强化学习算法。


PPO让我们在根据挑战性的环境中训练AI策略,例如上面所示的Roboschool训练场中,智能体(agent)的任务是追逐粉红色的球体,并在期间学习走路、跑步、转向以及被击倒时如何站起来。

代码在此:

https://github.com/openai/baselines

Paper在此:

https://openai-public.s3-us-west-2.amazonaws.com/blog/2017-07/ppo/ppo-arxiv.pdf

最近在使用深度神经网络控制视频游戏等领域取得的突破中,策略梯度方法扮演了基础的角色。但策略梯度方法想要获得良好的结果非常困难,因为它对步长的选择比较敏感——太小。而且过程慢得让人绝望。样本效率通常也不好。

通过监督学习,我们可以轻松实现成本函数,运行梯度下降,而且很有信心能通过相对较小的超参数调优获得出色的结果。强化算法的成功路径并不明显,算法里有很多难以调试的部分。PPO则在样本复杂性和易于调优之间取得平衡,试图在每一步最小化成本函数计算更新时,确保与先前策略的偏差相对较小。

我们详细说明了使用自适应KL惩罚来控制每次迭代策略变化的PPO变体。新的变体使用其他算法中通常没有的新目标函数:

该目标实现了一种与随机梯度下降兼容的信赖域修正方法,并通过消除KL损失来简化算法,以及减小适应性修正的需求。在测试中,这一算法在连续控制任务上显示出最佳性能,几乎与ACER在Atari上的性能相匹配,而且实现起来更为简单。

OpenAI还使用PPO来教导复杂的模拟机器人。


例如波士顿动力的Atlas。这个模型具有30个不同的关节,普通的双足机器人只有17个左右。研究人员利用PPO训练模拟机器人,在越过障碍物时表现出跑酷的感觉。(不过在这个演示视频中,没有感觉出来……)

基线:PPO和TRPO

这一次放出的基线版本包括PPO和TRPO的可扩展并行实现,它们都是用MPI进行数据传递。两者都是用Python3和TensorFlow。

OpenAI基线是一套强化学习算法的高质量实现。地址在:https://github.com/openai/baselines

可以直接输入下面这个命令安装:

pip install baselines

【完】

本文作者:允中
原文发布时间:2017-07-21
相关文章
|
2天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
105 80
|
10天前
|
机器学习/深度学习 算法
强化学习之父Richard Sutton给出一个简单思路,大幅增强所有RL算法
Richard Sutton领导的团队提出了一种称为“奖励中心化”的方法,通过从观察到的奖励中减去其经验平均值,使奖励更加集中,显著提高了强化学习算法的性能。该方法在解决持续性问题时表现出色,尤其是在折扣因子接近1的情况下。论文地址:https://arxiv.org/pdf/2405.09999
39 15
|
3天前
|
缓存 算法 搜索推荐
Java中的算法优化与复杂度分析
在Java开发中,理解和优化算法的时间复杂度和空间复杂度是提升程序性能的关键。通过合理选择数据结构、避免重复计算、应用分治法等策略,可以显著提高算法效率。在实际开发中,应该根据具体需求和场景,选择合适的优化方法,从而编写出高效、可靠的代码。
15 6
|
8天前
|
机器学习/深度学习 前端开发 算法
婚恋交友系统平台 相亲交友平台系统 婚恋交友系统APP 婚恋系统源码 婚恋交友平台开发流程 婚恋交友系统架构设计 婚恋交友系统前端/后端开发 婚恋交友系统匹配推荐算法优化
婚恋交友系统平台通过线上互动帮助单身男女找到合适伴侣,提供用户注册、个人资料填写、匹配推荐、实时聊天、社区互动等功能。开发流程包括需求分析、技术选型、系统架构设计、功能实现、测试优化和上线运维。匹配推荐算法优化是核心,通过用户行为数据分析和机器学习提高匹配准确性。
37 3
|
8天前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
23 2
|
23天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
20天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
24天前
|
算法
通过matlab分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法
本项目使用MATLAB2022A版本,对比分析了PSO、反向学习PSO及多策略改进反向学习PSO三种优化算法的性能,主要通过优化收敛曲线进行直观展示。核心代码实现了标准PSO算法流程,加入反向学习机制及多种改进策略,以提升算法跳出局部最优的能力,增强全局搜索效率。
|
20天前
|
算法
通过matlab对比遗传算法优化前后染色体的变化情况
该程序使用MATLAB2022A实现遗传算法优化染色体的过程,通过迭代选择、交叉和变异操作,提高染色体适应度,优化解的质量,同时保持种群多样性,避免局部最优。代码展示了算法的核心流程,包括适应度计算、选择、交叉、变异等步骤,并通过图表直观展示了优化前后染色体的变化情况。
|
22天前
|
算法 决策智能
基于遗传优化算法的TSP问题求解matlab仿真
本项目使用遗传算法解决旅行商问题(TSP),目标是在四个城市间找到最短路径。算法通过编码、选择、交叉、变异等步骤,在MATLAB2022A上实现路径优化,最终输出最优路径及距离。