图像处理之角点检测算法(Harris Corner Detection)

简介: 图像处理之角点检测算法(Harris Corner Detection)Harris角点检测是通过数学计算在图像上发现角点特征的一种算法,而且其具有旋转不变性的特质。OpenCV中的Shi-Tomasi角点检测就是基于Harris角点检测改进算法。

图像处理之角点检测算法(Harris Corner Detection)

Harris角点检测是通过数学计算在图像上发现角点特征的一种算法,而且其具有旋转不

性的特质。OpenCV中的Shi-Tomasi角点检测就是基于Harris角点检测改进算法。

基本原理:

角点是一幅图像上最明显与重要的特征,对于一阶导数而言,角点在各个方向的变化是

最大的,而边缘区域在只是某一方向有明显变化。一个直观的图示如下:


数学原理:

基本数学公式如下:


其中W(x, y)表示移动窗口,I(x, y)表示像素灰度值强度,范围为0~255。根据泰勒级数

计算一阶到N阶的偏导数,最终得到一个Harris矩阵公式:


根据Harris的矩阵计算矩阵特征值,然后计算Harris角点响应值:


其中K为系数值,通常取值范围为0.04 ~ 0.06之间。

算法详细步骤

第一步:计算图像X方向与Y方向的一阶高斯偏导数Ix与Iy

第二步:根据第一步结果得到Ix^2 , Iy^2与Ix*Iy值

第三步:高斯模糊第二步三个值得到Sxx, Syy, Sxy

第四部:定义每个像素的Harris矩阵,计算出矩阵的两个特质值

第五步:计算出每个像素的R值

第六步:使用3X3或者5X5的窗口,实现非最大值压制

第七步:根据角点检测结果计算,最提取到的关键点以绿色标记,显示在原图上。

程序关键代码解读

第一步计算一阶高斯偏导数的Ix与Iy值代码如下:

		filter.setDirectionType(GaussianDerivativeFilter.X_DIRECTION);
		BufferedImage xImage = filter.filter(grayImage, null);
		getRGB( xImage, 0, 0, width, height, inPixels );
		extractPixelData(inPixels, GaussianDerivativeFilter.X_DIRECTION, height, width);
		
		filter.setDirectionType(GaussianDerivativeFilter.Y_DIRECTION);
		BufferedImage yImage = filter.filter(grayImage, null);
		getRGB( yImage, 0, 0, width, height, inPixels );
		extractPixelData(inPixels, GaussianDerivativeFilter.Y_DIRECTION, height, width);

关于如何计算高斯一阶与二阶偏导数请看这里:

http://blog.csdn.net/jia20003/article/details/16369143

http://blog.csdn.net/jia20003/article/details/7664777

第三步:分别对第二步计算出来的三个值,单独进行高斯

模糊计算,代码如下:

	private void calculateGaussianBlur(int width, int height) {
        int index = 0;
        int radius = (int)window_radius;
        double[][] gw = get2DKernalData(radius, sigma);
        double sumxx = 0, sumyy = 0, sumxy = 0;
        for(int row=0; row<height; row++) {
        	for(int col=0; col<width; col++) {        		
        		for(int subrow =-radius; subrow<=radius; subrow++)
        		{
        			for(int subcol=-radius; subcol<=radius; subcol++)
        			{
        				int nrow = row + subrow;
        				int ncol = col + subcol;
        				if(nrow >= height || nrow < 0)
        				{
        					nrow = 0;
        				}
        				if(ncol >= width || ncol < 0)
        				{
        					ncol = 0;
        				}
        				int index2 = nrow * width + ncol;
        				HarrisMatrix whm = harrisMatrixList.get(index2);
        				sumxx += (gw[subrow + radius][subcol + radius] * whm.getXGradient());
        				sumyy += (gw[subrow + radius][subcol + radius] * whm.getYGradient());
        				sumxy += (gw[subrow + radius][subcol + radius] * whm.getIxIy());
        			}
        		}
        		index = row * width + col;
        		HarrisMatrix hm = harrisMatrixList.get(index);
        		hm.setXGradient(sumxx);
        		hm.setYGradient(sumyy);
        		hm.setIxIy(sumxy);
        		
        		// clean up for next loop
        		sumxx = 0;
        		sumyy = 0;
        		sumxy = 0;
        	}
        }		
	}

第六步:非最大信号压制(non-max value suppression)

这个在边源检测中是为了得到一个像素宽的边缘,在这里则

是为了得到准确的一个角点像素,去掉非角点值。代码如下:

	/***
	 * we still use the 3*3 windows to complete the non-max response value suppression
	 */
	private void nonMaxValueSuppression(int width, int height) {
        int index = 0;
        int radius = (int)window_radius;
        for(int row=0; row<height; row++) {
        	for(int col=0; col<width; col++) {
        		index = row * width + col;
        		HarrisMatrix hm = harrisMatrixList.get(index);
        		double maxR = hm.getR();
        		boolean isMaxR = true;
        		for(int subrow =-radius; subrow<=radius; subrow++)
        		{
        			for(int subcol=-radius; subcol<=radius; subcol++)
        			{
        				int nrow = row + subrow;
        				int ncol = col + subcol;
        				if(nrow >= height || nrow < 0)
        				{
        					nrow = 0;
        				}
        				if(ncol >= width || ncol < 0)
        				{
        					ncol = 0;
        				}
        				int index2 = nrow * width + ncol;
        				HarrisMatrix hmr = harrisMatrixList.get(index2);
        				if(hmr.getR() > maxR)
        				{
        					isMaxR = false;
        				}
        			}       			
        		}
        		if(isMaxR)
        		{
        			hm.setMax(maxR);
        		}
        	}
        }
		
	}

运行效果:


程序完整源代码:

package com.gloomyfish.image.harris.corner;

import java.awt.image.BufferedImage;
import java.util.ArrayList;
import java.util.List;

import com.gloomyfish.filter.study.GrayFilter;

public class HarrisCornerDetector extends GrayFilter {
	private GaussianDerivativeFilter filter;
	private List<HarrisMatrix> harrisMatrixList;
	private double lambda = 0.04; // scope : 0.04 ~ 0.06
	
	// i hard code the window size just keep it' size is same as 
	// first order derivation Gaussian window size
	private double sigma = 1; // always
	private double window_radius = 1; // always
	public HarrisCornerDetector() {
		filter = new GaussianDerivativeFilter();
		harrisMatrixList = new ArrayList<HarrisMatrix>();
	}

	@Override
	public BufferedImage filter(BufferedImage src, BufferedImage dest) {
		int width = src.getWidth();
        int height = src.getHeight();
        initSettings(height, width);
        if ( dest == null )
            dest = createCompatibleDestImage( src, null );
        
        BufferedImage grayImage = super.filter(src, null);
        int[] inPixels = new int[width*height];
        
		// first step  - Gaussian first-order Derivatives (3 × 3) - X - gradient, (3 × 3) - Y - gradient
		filter.setDirectionType(GaussianDerivativeFilter.X_DIRECTION);
		BufferedImage xImage = filter.filter(grayImage, null);
		getRGB( xImage, 0, 0, width, height, inPixels );
		extractPixelData(inPixels, GaussianDerivativeFilter.X_DIRECTION, height, width);
		
		filter.setDirectionType(GaussianDerivativeFilter.Y_DIRECTION);
		BufferedImage yImage = filter.filter(grayImage, null);
		getRGB( yImage, 0, 0, width, height, inPixels );
		extractPixelData(inPixels, GaussianDerivativeFilter.Y_DIRECTION, height, width);
				
		// second step - calculate the Ix^2, Iy^2 and Ix^Iy
		for(HarrisMatrix hm : harrisMatrixList)
		{
			double Ix = hm.getXGradient();
			double Iy = hm.getYGradient();
			hm.setIxIy(Ix * Iy);
			hm.setXGradient(Ix*Ix);
			hm.setYGradient(Iy*Iy);
		}
		
		// 基于高斯方法,中心点化窗口计算一阶导数和,关键一步 SumIx2, SumIy2 and SumIxIy, 高斯模糊
		calculateGaussianBlur(width, height);

		// 求取Harris Matrix 特征值 
		// 计算角度相应值R R= Det(H) - lambda * (Trace(H))^2
		harrisResponse(width, height);
		
		// based on R, compute non-max suppression
		nonMaxValueSuppression(width, height);
		
		// match result to original image and highlight the key points
		int[] outPixels = matchToImage(width, height, src);
		
		// return result image
		setRGB( dest, 0, 0, width, height, outPixels );
		return dest;
	}
	
	
	private int[] matchToImage(int width, int height, BufferedImage src) {
		int[] inPixels = new int[width*height];
        int[] outPixels = new int[width*height];
        getRGB( src, 0, 0, width, height, inPixels );
        int index = 0;
        for(int row=0; row<height; row++) {
        	int ta = 0, tr = 0, tg = 0, tb = 0;
        	for(int col=0; col<width; col++) {
        		index = row * width + col;
        		ta = (inPixels[index] >> 24) & 0xff;
                tr = (inPixels[index] >> 16) & 0xff;
                tg = (inPixels[index] >> 8) & 0xff;
                tb = inPixels[index] & 0xff;
                HarrisMatrix hm = harrisMatrixList.get(index);
                if(hm.getMax() > 0)
                {
                	tr = 0;
                	tg = 255; // make it as green for corner key pointers
                	tb = 0;
                	outPixels[index] = (ta << 24) | (tr << 16) | (tg << 8) | tb;
                }
                else
                {
                	outPixels[index] = (ta << 24) | (tr << 16) | (tg << 8) | tb;                	
                }
                
        	}
        }
		return outPixels;
	}
	/***
	 * we still use the 3*3 windows to complete the non-max response value suppression
	 */
	private void nonMaxValueSuppression(int width, int height) {
        int index = 0;
        int radius = (int)window_radius;
        for(int row=0; row<height; row++) {
        	for(int col=0; col<width; col++) {
        		index = row * width + col;
        		HarrisMatrix hm = harrisMatrixList.get(index);
        		double maxR = hm.getR();
        		boolean isMaxR = true;
        		for(int subrow =-radius; subrow<=radius; subrow++)
        		{
        			for(int subcol=-radius; subcol<=radius; subcol++)
        			{
        				int nrow = row + subrow;
        				int ncol = col + subcol;
        				if(nrow >= height || nrow < 0)
        				{
        					nrow = 0;
        				}
        				if(ncol >= width || ncol < 0)
        				{
        					ncol = 0;
        				}
        				int index2 = nrow * width + ncol;
        				HarrisMatrix hmr = harrisMatrixList.get(index2);
        				if(hmr.getR() > maxR)
        				{
        					isMaxR = false;
        				}
        			}       			
        		}
        		if(isMaxR)
        		{
        			hm.setMax(maxR);
        		}
        	}
        }
		
	}
	
	/***
	 * 计算两个特征值,然后得到R,公式如下,可以自己推导,关于怎么计算矩阵特征值,请看这里:
	 * http://www.sosmath.com/matrix/eigen1/eigen1.html
	 * 
	 * 	A = Sxx;
	 *	B = Syy;
	 *  C = Sxy*Sxy*4;
	 *	lambda = 0.04;
	 *	H = (A*B - C) - lambda*(A+B)^2;
     *
	 * @param width
	 * @param height
	 */
	private void harrisResponse(int width, int height) {
        int index = 0;
        for(int row=0; row<height; row++) {
        	for(int col=0; col<width; col++) {
        		index = row * width + col;
        		HarrisMatrix hm = harrisMatrixList.get(index);
        		double c =  hm.getIxIy() * hm.getIxIy();
        		double ab = hm.getXGradient() * hm.getYGradient();
        		double aplusb = hm.getXGradient() + hm.getYGradient();
        		double response = (ab -c) - lambda * Math.pow(aplusb, 2);
        		hm.setR(response);
        	}
        }		
	}

	private void calculateGaussianBlur(int width, int height) {
        int index = 0;
        int radius = (int)window_radius;
        double[][] gw = get2DKernalData(radius, sigma);
        double sumxx = 0, sumyy = 0, sumxy = 0;
        for(int row=0; row<height; row++) {
        	for(int col=0; col<width; col++) {        		
        		for(int subrow =-radius; subrow<=radius; subrow++)
        		{
        			for(int subcol=-radius; subcol<=radius; subcol++)
        			{
        				int nrow = row + subrow;
        				int ncol = col + subcol;
        				if(nrow >= height || nrow < 0)
        				{
        					nrow = 0;
        				}
        				if(ncol >= width || ncol < 0)
        				{
        					ncol = 0;
        				}
        				int index2 = nrow * width + ncol;
        				HarrisMatrix whm = harrisMatrixList.get(index2);
        				sumxx += (gw[subrow + radius][subcol + radius] * whm.getXGradient());
        				sumyy += (gw[subrow + radius][subcol + radius] * whm.getYGradient());
        				sumxy += (gw[subrow + radius][subcol + radius] * whm.getIxIy());
        			}
        		}
        		index = row * width + col;
        		HarrisMatrix hm = harrisMatrixList.get(index);
        		hm.setXGradient(sumxx);
        		hm.setYGradient(sumyy);
        		hm.setIxIy(sumxy);
        		
        		// clean up for next loop
        		sumxx = 0;
        		sumyy = 0;
        		sumxy = 0;
        	}
        }		
	}
	
	public double[][] get2DKernalData(int n, double sigma) {
		int size = 2*n +1;
		double sigma22 = 2*sigma*sigma;
		double sigma22PI = Math.PI * sigma22;
		double[][] kernalData = new double[size][size];
		int row = 0;
		for(int i=-n; i<=n; i++) {
			int column = 0;
			for(int j=-n; j<=n; j++) {
				double xDistance = i*i;
				double yDistance = j*j;
				kernalData[row][column] = Math.exp(-(xDistance + yDistance)/sigma22)/sigma22PI;
				column++;
			}
			row++;
		}
		
//		for(int i=0; i<size; i++) {
//			for(int j=0; j<size; j++) {
//				System.out.print("\t" + kernalData[i][j]);
//			}
//			System.out.println();
//			System.out.println("\t ---------------------------");
//		}
		return kernalData;
	}

	private void extractPixelData(int[] pixels, int type, int height, int width)
	{
        int index = 0;
        for(int row=0; row<height; row++) {
        	int ta = 0, tr = 0, tg = 0, tb = 0;
        	for(int col=0; col<width; col++) {
        		index = row * width + col;
        		ta = (pixels[index] >> 24) & 0xff;
                tr = (pixels[index] >> 16) & 0xff;
                tg = (pixels[index] >> 8) & 0xff;
                tb = pixels[index] & 0xff;
                HarrisMatrix matrix = harrisMatrixList.get(index);
                if(type == GaussianDerivativeFilter.X_DIRECTION)
                {
                	matrix.setXGradient(tr);
                }
                if(type == GaussianDerivativeFilter.Y_DIRECTION)
                {
                	matrix.setYGradient(tr);
                }
        	}
        }
	}
	
	private void initSettings(int height, int width)
	{
        int index = 0;
        for(int row=0; row<height; row++) {
        	for(int col=0; col<width; col++) {
        		index = row * width + col;
        		HarrisMatrix matrix = new HarrisMatrix();
                harrisMatrixList.add(index, matrix);
        	}
        }
	}

}
最后注意:

我是把彩色图像变为灰度图像来计算,这个计算量小点

处理容易点,此外很多图像处理软件都会用标记来显示

关键点像素,我没有,只是将关键点像素改为绿色。

所以可以从这些方面有很大的提高空间。

目录
相关文章
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
4天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
|
1月前
|
算法 安全
分别使用OVP-UVP和OFP-UFP算法以及AFD检测算法实现反孤岛检测simulink建模与仿真
本课题通过Simulink建模与仿真,实现OVP-UVP、OFP-UFP算法及AFD检测算法的反孤岛检测。OVP-UVP基于电压幅值变化,OFP-UFP基于频率变化,而AFD则通过注入频率偏移信号来检测孤岛效应,确保电力系统安全稳定运行。系统使用MATLAB 2013b进行建模与仿真验证。
|
9天前
|
存储 JSON 算法
TDengine 检测数据最佳压缩算法工具,助你一键找出最优压缩方案
在使用 TDengine 存储时序数据时,压缩数据以节省磁盘空间是至关重要的。TDengine 支持用户根据自身数据特性灵活指定压缩算法,从而实现更高效的存储。然而,如何选择最合适的压缩算法,才能最大限度地降低存储开销?为了解决这一问题,我们特别推出了一个实用工具,帮助用户快速判断并选择最适合其数据特征的压缩算法。
18 0
|
23天前
|
算法 计算机视觉 Python
圆形检测算法-基于颜色和形状(opencv)
该代码实现了一个圆检测算法,用于识别视频中的红色、白色和蓝色圆形。通过将图像从RGB转换为HSV颜色空间,并设置对应颜色的阈值范围,提取出目标颜色的区域。接着对这些区域进行轮廓提取和面积筛选,使用霍夫圆变换检测圆形,并在原图上绘制检测结果。
62 0
|
13天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
10天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
11天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
16天前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。
|
18天前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。