图像处理之三角法图像二值化

简介: 图像处理之三角法图像二值化三角法求阈值最早见于Zack的论文《Automatic measurement of sister chromatid exchange frequency》主要是用于染色体的研究,该方法是使用直方图数据,基于纯几何方法来寻找最佳阈值,它的成立条件...

图像处理之三角法图像二值化

三角法求阈值最早见于Zack的论文《Automatic measurement of sister chromatid exchange frequency》主要是用于染色体的研究,该方法是使用直方图数据,基于纯几何方法来寻找最佳阈值,它的成立条件是假设直方图最大波峰在靠近最亮的一侧,然后通过三角形求得最大直线距离,根据最大直线距离对应的直方图灰度等级即为分割阈值,图示如下:
这里写图片描述
对上图的详细解释:
在直方图上从最高峰处bmx到最暗对应直方图bmin(p=0)%构造一条直线,从bmin处开始计算每个对应的直方图b到直线的垂直距离,知道bmax为止,其中最大距离对应的直方图位置即为图像二值化对应的阈值T。

扩展情况:
有时候最大波峰对应位置不在直方图最亮一侧,而在暗的一侧,这样就需要翻转直方图,翻转之后求得值,用255减去即得到为阈值T。扩展情况的直方图表示如下:
这里写图片描述

二:算法步骤
1. 图像转灰度
2. 计算图像灰度直方图
3. 寻找直方图中两侧边界
4. 寻找直方图最大值
5. 检测是否最大波峰在亮的一侧,否则翻转
6. 计算阈值得到阈值T,如果翻转则255-T

三:代码实现

package com.gloomyfish.filter.study;

import java.awt.image.BufferedImage;

public class TriangleBinaryFilter extends AbstractBufferedImageOp{

    public TriangleBinaryFilter() {
        System.out.println("triangle binary filter");
    }

    @Override
    public BufferedImage filter(BufferedImage src, BufferedImage dest) {
        int width = src.getWidth();
        int height = src.getHeight();

        if ( dest == null )
            dest = createCompatibleDestImage( src, null );
        // 图像灰度化
        int[] inPixels = new int[width*height];
        int[] outPixels = new int[width*height];
        getRGB( src, 0, 0, width, height, inPixels );
        int index = 0;
        for(int row=0; row<height; row++) {
            int ta = 0, tr = 0, tg = 0, tb = 0;
            for(int col=0; col<width; col++) {
                index = row * width + col;
                ta = (inPixels[index] >> 24) & 0xff;
                tr = (inPixels[index] >> 16) & 0xff;
                tg = (inPixels[index] >> 8) & 0xff;
                tb = inPixels[index] & 0xff;
                int gray= (int)(0.299 *tr + 0.587*tg + 0.114*tb);
                inPixels[index]  = (ta << 24) | (gray << 16) | (gray << 8) | gray;
            }
        }
        // 获取直方图
        int[] histogram = new int[256];
        for(int row=0; row<height; row++) {
            int tr = 0;
            for(int col=0; col<width; col++) {
                index = row * width + col;
                tr = (inPixels[index] >> 16) & 0xff;
                histogram[tr]++;
            }
        }


        int left_bound = 0, right_bound = 0, max_ind = 0, max = 0;
        int temp;
        boolean isflipped = false;
        int i=0, j=0;
        int N = 256;

        // 找到最左边零的位置
        for( i = 0; i < N; i++ )
        {
            if( histogram[i] > 0 )
            {
                left_bound = i;
                break;
            }
        }
     // 位置再移动一个步长,即为最左侧零位置 
        if( left_bound > 0 )
            left_bound--;

        // 找到最右边零点位置
        for( i = N-1; i > 0; i-- )
        {
            if( histogram[i] > 0 )
            {
                right_bound = i;
                break;
            }
        }
        // 位置再移动一个步长,即为最右侧零位置 
        if( right_bound < N-1 )
            right_bound++;

        // 在直方图上寻找最亮的点Hmax
        for( i = 0; i < N; i++ )
        {
            if( histogram[i] > max)
            {
                max = histogram[i];
                max_ind = i;
            }
        }

        // 如果最大值落在靠左侧这样就无法满足三角法求阈值,所以要检测是否最大值是否靠近左侧
        // 如果靠近左侧则通过翻转到右侧位置。
        if( max_ind-left_bound < right_bound-max_ind)
        {
            isflipped = true;
            i = 0;
            j = N-1;
            while( i < j )
            {
                // 左右交换
                temp = histogram[i]; histogram[i] = histogram[j]; histogram[j] = temp;
                i++; j--;
            }
            left_bound = N-1-right_bound;
            max_ind = N-1-max_ind;
        }

        // 计算求得阈值
        double thresh = left_bound;
        double a, b, dist = 0, tempdist;
        a = max; b = left_bound-max_ind;
        for( i = left_bound+1; i <= max_ind; i++ )
        {
            // 计算距离 - 不需要真正计算
            tempdist = a*i + b*histogram[i];
            if( tempdist > dist)
            {
                dist = tempdist;
                thresh = i;
            }
        }
        thresh--;

        // 对已经得到的阈值T,如果前面已经翻转了,则阈值要用255-T
        if( isflipped )
            thresh = N-1-thresh;

        // 二值化
        System.out.println("final threshold value : " + thresh);
        for(int row=0; row<height; row++) {
            for(int col=0; col<width; col++) {
                index = row * width + col;
                int gray = (inPixels[index] >> 8) & 0xff;
                if(gray > thresh)
                {
                    gray = 255;
                    outPixels[index]  = (0xff << 24) | (gray << 16) | (gray << 8) | gray;
                }
                else
                {
                    gray = 0;
                    outPixels[index]  = (0xff << 24) | (gray << 16) | (gray << 8) | gray;
                }

            }
        }


        // 返回二值图像
        setRGB(dest, 0, 0, width, height, outPixels );
        return dest;
    }

}

四:运行结果
这里写图片描述

2016年最后一篇,这里祝大家元旦快乐,欢迎在2017继续关注本博客,分享有用实用的图像处理知识本人会一直坚持到永远!
学习图像处理基础入门课程 - 点击这里

目录
相关文章
|
3月前
|
计算机视觉
【图像处理】 Halcon 实现图像亚像素边缘检测
如何在Halcon软件中实现图像亚像素边缘检测,包括读取图片、图像阈值化、边界提取、区域扩张、亚像素边缘提取、轮廓拟合和彩色绘图等步骤,并提供了相应的Halcon代码实现和检测效果展示。
95 2
|
4月前
|
计算机视觉 Python
将图像处理为灰度图和二值化图
【7月更文挑战第28天】将图像处理为灰度图和二值化图。
70 3
|
5月前
|
算法 计算机视觉
图像处理之图像快速旋转算法
图像处理之图像快速旋转算法
450 1
|
5月前
|
算法 C语言 计算机视觉
图像处理之图像快速插值放缩算法
图像处理之图像快速插值放缩算法
34 0
|
5月前
|
算法 计算机视觉
图像处理之霍夫变换圆检测算法
图像处理之霍夫变换圆检测算法
45 0
|
5月前
|
算法 计算机视觉
图像处理之霍夫变换(直线检测算法)
图像处理之霍夫变换(直线检测算法)
51 0
|
5月前
|
计算机视觉
图像处理之常见二值化方法汇总
图像处理之常见二值化方法汇总
114 0
|
6月前
|
存储 编解码 资源调度
【OpenCV】—线性滤波:方框滤波、均值滤波、高斯滤波
【OpenCV】—线性滤波:方框滤波、均值滤波、高斯滤波
308 2
|
6月前
|
算法 计算机视觉
OpenCV高斯差分技术实现图像边缘检测
OpenCV高斯差分技术实现图像边缘检测
使用纹理滤波器对图像进行纹理分割
说明如何根据纹理识别和分割区域。
85 0