opencv 之 icvCreateHidHaarClassifierCascade 分类器信息初始化函数部分详细代码注释。

简介: 请看注释。这个函数,是人脸识别主函数,里面出现过的函数之一,作用是初始化分类器的数据,就是一个xml文件的数据初始化。 1 static CvHidHaarClassifierCascade* icvCreateHidHaarClassifierCascade( CvHaarClassi...

请看注释。这个函数,是人脸识别主函数,里面出现过的函数之一,作用是初始化分类器的数据,就是一个xml文件的数据初始化。


  1 static CvHidHaarClassifierCascade* icvCreateHidHaarClassifierCascade( CvHaarClassifierCascade* cascade )
  2 {
  3     CvRect* ipp_features = 0;//定义一个矩形框指针
  4     float *ipp_weights = 0, *ipp_thresholds = 0, *ipp_val1 = 0, *ipp_val2 = 0;//单精度浮点数指针4个
  5     int* ipp_counts = 0;//整形指针1个
  6 
  7     CvHidHaarClassifierCascade* out = 0;//最终返回的值
  8 
  9     int i, j, k, l;//for循环的控制变量
 10     int datasize;//数据大小
 11     int total_classifiers = 0;//总的分类器数目
 12     int total_nodes = 0;
 13     char errorstr[1000];//错误信息数组
 14     CvHidHaarClassifier* haar_classifier_ptr;//级联分类器指针
 15     CvHidHaarTreeNode* haar_node_ptr;
 16     CvSize orig_window_size;//提取窗口的大小
 17     int has_tilted_features = 0;
 18     int max_count = 0;
 19 
 20     if( !CV_IS_HAAR_CLASSIFIER(cascade) )//判断传进来的分类器文件是否真正确
 21         CV_Error( !cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier pointer" );
 22 
 23     if( cascade->hid_cascade )//判断改分类器xml文件是否已经被初始化了
 24         CV_Error( CV_StsError, "hid_cascade has been already created" );
 25 
 26     if( !cascade->stage_classifier )//如果没有阶级分类器,报错
 27         CV_Error( CV_StsNullPtr, "" );
 28 
 29     if( cascade->count <= 0 )//如果分类器的阶级数<=0,报错
 30         CV_Error( CV_StsOutOfRange, "Negative number of cascade stages" );
 31 
 32     orig_window_size = cascade->orig_window_size;//获取识别窗口的大小
 33 
 34     /* check input structure correctness and calculate total memory size needed for
 35        internal representation of the classifier cascade */
 36 
 37     for( i = 0; i < cascade->count; i++ )//对xml文件里面的每阶段的stage进行循环提取相关数据
 38     {
 39         CvHaarStageClassifier* stage_classifier = cascade->stage_classifier + i;
 40         //获取每次进入循环的后阶段的子分类器,以haarcascade_upperbody.xml 为例子,count是30,stage_classifier的count是20
 41 
 42         if( !stage_classifier->classifier ||//判断阶段分类器、子分类器及其stage 层数 是否合法
 43             stage_classifier->count <= 0 )
 44         {
 45             sprintf( errorstr, "header of the stage classifier #%d is invalid "
 46                      "(has null pointers or non-positive classfier count)", i );
 47             CV_Error( CV_StsError, errorstr );
 48         }
 49 
 50         max_count = MAX( max_count, stage_classifier->count );//获取子分类器stage的数目,以haarcascade_upperbody.xml为例,是20
 51         total_classifiers += stage_classifier->count;//统计出总的子分类器的stage数目,即tree,再统计
 52 
 53         for( j = 0; j < stage_classifier->count; j++ )
 54         //这个for循环主要是进入到子分类器tree里面的数据提取并且对其正确性的判断,
 55         //循环条件为字stage数目,以haarcascade_upperbody.xml为例,为20
 56         {
 57             CvHaarClassifier* classifier = stage_classifier->classifier + j;//同上,找到此时循环的tree
 58 
 59             total_nodes += classifier->count;//计算出此时循环的tree子分类器的root node 数目,再统计。以haarcascade_upperbody.xml为例,每个tree的node是1
 60             for( l = 0; l < classifier->count; l++ )
 61                 //这个是关键循环,主数据的获取
 62                 //以haarcascade_upperbody.xml为例,此时classifier->count=1,循环一次,进入里面获取关键数据
 63             {
 64                 for( k = 0; k < CV_HAAR_FEATURE_MAX; k++ )//CV_HAAR_FEATURE_MAX = 3,循环三次,feature的最大数目,以haarcascade_upperbody.xml为例,只有1个
 65                 {
 66                     if( classifier->haar_feature[l].rect[k].r.width )
 67                         //逐层递归,先找feature,再找它里面的rect标签里面的矩阵row,行的宽度
 68                         //以haarcascade_upperbody.xml为例,是2
 69                     {
 70                         CvRect r = classifier->haar_feature[l].rect[k].r;//把此时row矩阵框赋给r
 71                         int tilted = classifier->haar_feature[l].tilted;//获取xml标签tited的值
 72                         has_tilted_features |= tilted != 0;//|是位运算,例如0|1=1,这行的作用是判断has和tilted那个是1,还不知道其意义何在
 73                         if( r.width < 0 || r.height < 0 || r.y < 0 ||
 74                             r.x + r.width > orig_window_size.width
 75                             ||
 76                             (!tilted &&
 77                             (r.x < 0 || r.y + r.height > orig_window_size.height))
 78                             ||
 79                             (tilted && (r.x - r.height < 0 ||
 80                             r.y + r.width + r.height > orig_window_size.height)))
 81                             //这个if语句是对feature里面的数据矩形的各方面判断,包括矩形的宽、高、等
 82                             //矩形# %d的分类器# %d”“级分类器# %d是不是在里面”“参考(原创)级联窗口”
 83                         {
 84                             sprintf( errorstr, "rectangle #%d of the classifier #%d of "
 85                                      "the stage classifier #%d is not inside "
 86                                      "the reference (original) cascade window", k, j, i );
 87                             CV_Error( CV_StsNullPtr, errorstr );
 88                         }
 89                     }
 90                 }
 91             }
 92         }
 93     }
 94     //上面数据的判断结束后,到这里
 95 
 96     datasize = sizeof(CvHidHaarClassifierCascade) +//获取整个分类器,xml文件的数据大小
 97                sizeof(CvHidHaarStageClassifier)*cascade->count +
 98                sizeof(CvHidHaarClassifier) * total_classifiers +
 99                sizeof(CvHidHaarTreeNode) * total_nodes +
100                sizeof(void*)*(total_nodes + total_classifiers);
101 
102     out = (CvHidHaarClassifierCascade*)cvAlloc( datasize );//给最终返回的变量分配内存大小
103     memset( out, 0, sizeof(*out) );//对变量初始化,全部填充0
104 
105     //下面是逐个赋值,初始化头部
106     /* init header */
107     out->count = cascade->count;//新分类器out的stage数目
108     out->stage_classifier = (CvHidHaarStageClassifier*)(out + 1);//子分类器tree的数目
109     haar_classifier_ptr = (CvHidHaarClassifier*)(out->stage_classifier + cascade->count);//tree指针
110     haar_node_ptr = (CvHidHaarTreeNode*)(haar_classifier_ptr + total_classifiers);//tree里面node的指针
111 
112     out->isStumpBased = 1;//布尔类型,true
113     out->has_tilted_features = has_tilted_features;
114     out->is_tree = 0;
115 
116     /* initialize internal representation */
117     for( i = 0; i < cascade->count; i++ )
118     {
119         CvHaarStageClassifier* stage_classifier = cascade->stage_classifier + i;
120         CvHidHaarStageClassifier* hid_stage_classifier = out->stage_classifier + i;
121 
122         hid_stage_classifier->count = stage_classifier->count;
123         hid_stage_classifier->threshold = stage_classifier->threshold - icv_stage_threshold_bias;
124         hid_stage_classifier->classifier = haar_classifier_ptr;
125         hid_stage_classifier->two_rects = 1;
126         haar_classifier_ptr += stage_classifier->count;
127 
128         hid_stage_classifier->parent = (stage_classifier->parent == -1)
129             ? NULL : out->stage_classifier + stage_classifier->parent;
130         hid_stage_classifier->next = (stage_classifier->next == -1)
131             ? NULL : out->stage_classifier + stage_classifier->next;
132         hid_stage_classifier->child = (stage_classifier->child == -1)
133             ? NULL : out->stage_classifier + stage_classifier->child;
134 
135         out->is_tree |= hid_stage_classifier->next != NULL;
136 
137         for( j = 0; j < stage_classifier->count; j++ )
138         {
139             CvHaarClassifier* classifier = stage_classifier->classifier + j;
140             CvHidHaarClassifier* hid_classifier = hid_stage_classifier->classifier + j;
141             int node_count = classifier->count;
142             float* alpha_ptr = (float*)(haar_node_ptr + node_count);
143 
144             hid_classifier->count = node_count;
145             hid_classifier->node = haar_node_ptr;
146             hid_classifier->alpha = alpha_ptr;
147 
148             for( l = 0; l < node_count; l++ )
149             {
150                 CvHidHaarTreeNode* node = hid_classifier->node + l;
151                 CvHaarFeature* feature = classifier->haar_feature + l;
152                 memset( node, -1, sizeof(*node) );
153                 node->threshold = classifier->threshold[l];
154                 node->left = classifier->left[l];
155                 node->right = classifier->right[l];
156 
157                 if( fabs(feature->rect[2].weight) < DBL_EPSILON ||
158                     feature->rect[2].r.width == 0 ||
159                     feature->rect[2].r.height == 0 )
160                     memset( &(node->feature.rect[2]), 0, sizeof(node->feature.rect[2]) );
161                 else
162                     hid_stage_classifier->two_rects = 0;
163             }
164 
165             memcpy( alpha_ptr, classifier->alpha, (node_count+1)*sizeof(alpha_ptr[0]));
166             haar_node_ptr =
167                 (CvHidHaarTreeNode*)cvAlignPtr(alpha_ptr+node_count+1, sizeof(void*));
168 
169             out->isStumpBased &= node_count == 1;
170         }
171     }
172 /*
173 #ifdef HAVE_IPP
174     int can_use_ipp = !out->has_tilted_features && !out->is_tree && out->isStumpBased;
175 
176     if( can_use_ipp )
177     {
178         int ipp_datasize = cascade->count*sizeof(out->ipp_stages[0]);
179         float ipp_weight_scale=(float)(1./((orig_window_size.width-icv_object_win_border*2)*
180             (orig_window_size.height-icv_object_win_border*2)));
181 
182         out->ipp_stages = (void**)cvAlloc( ipp_datasize );
183         memset( out->ipp_stages, 0, ipp_datasize );
184 
185         ipp_features = (CvRect*)cvAlloc( max_count*3*sizeof(ipp_features[0]) );
186         ipp_weights = (float*)cvAlloc( max_count*3*sizeof(ipp_weights[0]) );
187         ipp_thresholds = (float*)cvAlloc( max_count*sizeof(ipp_thresholds[0]) );
188         ipp_val1 = (float*)cvAlloc( max_count*sizeof(ipp_val1[0]) );
189         ipp_val2 = (float*)cvAlloc( max_count*sizeof(ipp_val2[0]) );
190         ipp_counts = (int*)cvAlloc( max_count*sizeof(ipp_counts[0]) );
191 
192         for( i = 0; i < cascade->count; i++ )
193         {
194             CvHaarStageClassifier* stage_classifier = cascade->stage_classifier + i;
195             for( j = 0, k = 0; j < stage_classifier->count; j++ )
196             {
197                 CvHaarClassifier* classifier = stage_classifier->classifier + j;
198                 int rect_count = 2 + (classifier->haar_feature->rect[2].r.width != 0);
199 
200                 ipp_thresholds[j] = classifier->threshold[0];
201                 ipp_val1[j] = classifier->alpha[0];
202                 ipp_val2[j] = classifier->alpha[1];
203                 ipp_counts[j] = rect_count;
204 
205                 for( l = 0; l < rect_count; l++, k++ )
206                 {
207                     ipp_features[k] = classifier->haar_feature->rect[l].r;
208                     //ipp_features[k].y = orig_window_size.height - ipp_features[k].y - ipp_features[k].height;
209                     ipp_weights[k] = classifier->haar_feature->rect[l].weight*ipp_weight_scale;
210                 }
211             }
212 
213             if( ippiHaarClassifierInitAlloc_32f( (IppiHaarClassifier_32f**)&out->ipp_stages[i],
214                 (const IppiRect*)ipp_features, ipp_weights, ipp_thresholds,
215                 ipp_val1, ipp_val2, ipp_counts, stage_classifier->count ) < 0 )
216                 break;
217         }
218 
219         if( i < cascade->count )
220         {
221             for( j = 0; j < i; j++ )
222                 if( out->ipp_stages[i] )
223                     ippiHaarClassifierFree_32f( (IppiHaarClassifier_32f*)out->ipp_stages[i] );
224             cvFree( &out->ipp_stages );
225         }
226     }
227 #endif
228 */
229     cascade->hid_cascade = out;
230     assert( (char*)haar_node_ptr - (char*)out <= datasize );
231 
232     cvFree( &ipp_features );
233     cvFree( &ipp_weights );
234     cvFree( &ipp_thresholds );
235     cvFree( &ipp_val1 );
236     cvFree( &ipp_val2 );
237     cvFree( &ipp_counts );
238 
239     return out;
240 }

 

如果您认为这篇文章还不错或者有所收获,您可以通过扫描一下下面的支付宝二维码 打赏我一杯咖啡【物质支持】,也可以点击右下角的【推荐】按钮【精神支持】,因为这两种支持都是我继续写作,分享的最大动力


img_12e3f54d4d0f70f0eb14f20548e3d781.png
目录
相关文章
|
6月前
|
监控 API 计算机视觉
OpenCV这么简单为啥不学——1.3、图像缩放resize函数
OpenCV这么简单为啥不学——1.3、图像缩放resize函数
78 0
|
6月前
|
人工智能 Linux API
OpenCV这么简单为啥不学——1.1、图像处理(灰度图、模糊图片、GaussianBlur函数、提取边缘、边缘膨胀、边缘细化)
OpenCV这么简单为啥不学——1.1、图像处理(灰度图、模糊图片、GaussianBlur函数、提取边缘、边缘膨胀、边缘细化)
104 0
|
6月前
|
机器学习/深度学习 算法 数据可视化
计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)-2
计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)
|
1月前
|
算法 计算机视觉
Opencv学习笔记(六):cv2.resize函数的介绍
这篇文章介绍了OpenCV库中cv2.resize函数的使用方法,包括其参数、插值方式选择以及实际代码示例。
267 1
Opencv学习笔记(六):cv2.resize函数的介绍
|
1月前
|
机器学习/深度学习 监控 算法
基于计算机视觉(opencv)的运动计数(运动辅助)系统-源码+注释+报告
基于计算机视觉(opencv)的运动计数(运动辅助)系统-源码+注释+报告
49 3
|
1月前
|
计算机视觉
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
这篇文章详细介绍了OpenCV库中的图像二值化函数`cv2.threshold`,包括二值化的概念、常见的阈值类型、函数的参数说明以及通过代码实例展示了如何应用该函数进行图像二值化处理,并展示了运行结果。
344 0
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
|
5月前
|
算法 开发工具 计算机视觉
【零代码研发】OpenCV实验大师工作流引擎C++ SDK演示
【零代码研发】OpenCV实验大师工作流引擎C++ SDK演示
83 1
|
1月前
|
缓存 监控 计算机视觉
视频监控笔记(三):opencv结合ffmpeg获取rtsp摄像头相关信息
本文介绍了如何使用OpenCV结合FFmpeg获取RTSP摄像头信息,包括网络架构、视频监控系统组成、以及如何读取和显示网络摄像头视频流。
46 1
|
3月前
|
算法 计算机视觉 Python
python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)
该文章详细介绍了使用Python和OpenCV进行相机标定以获取畸变参数,并提供了修正图像畸变的全部代码,包括生成棋盘图、拍摄标定图像、标定过程和畸变矫正等步骤。
python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)
|
3月前
|
计算机视觉 索引
OpenCV读取视频失败<无可用信息,未为 opencv_world453.dll 加载任何符号> cv::VideoCapture
本文介绍了解决OpenCV读取视频失败的错误,指出问题通常由视频路径错误或摄像头索引错误导致,并提供了相应的解决方法。
OpenCV读取视频失败<无可用信息,未为 opencv_world453.dll 加载任何符号> cv::VideoCapture
下一篇
无影云桌面