流行AI框架和库的优缺点比较

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 不知道自己应该选用那个AI框架和库?看看本文就行了,本文为AI开发的工程师们梳理了现在最流行的框架,并简单的分析了它们的优缺点。

已经存在很长时间,然而,由于这一领域的巨大发展,近年来它已成为一个流行语。人工智能曾经被称为一个书呆子和天才领域,但由于各种库和框架的发展,它已成为一个友好的IT领域,更多的人开始了他们的人工智能之旅。

在这篇文章中,我们将研究人工智能的高质量库的优点和缺点,以及它们的一些特点。

1. TensorFlow


使用数据流图计算进行机器学习

语言C ++Python

当你进入AI时,你会听到的第一个框架之一就是GoogleTensorFlowTensorFlow是一个使用数据流图进行数值计算的开源框架。这个框架被称为具有允许在任何CPUGPU上进行计算的架构,无论是台式机,服务器还是移动设备,另外这个框架在Python编程语言中是可用的,这也是Python大火的原因。

TensorFlow是通过称为节点的数据层进行排序,并根据获得的信息做出决定。这是它的官网


优点

  • 使用易于学习的语言(Python)。
  • 使用计算图抽象。
  • 可以使用可视化的TensorBoard

缺点

  • 它很慢,因为Python不是编程语言中最快的。
  • 缺乏许多预先训练的模型。
  • 不完全开源。

2.CNTK


开源深度学习工具包

语言C ++

我们可以称之为它是微软对GoogleTensorFlow的回应。

微软的CNTK是一个增强分离计算网络模块化和维护的库,它提供了学习算法和模型描述。在需要大量服务器进行操作的情况下,CNTK可以同时利用多台服务器。

据说它的功能与GoogleTensorFlow相近,但是,它更快,在这里了解更多


优点

  • 非常灵活。
  • 允许分布式培训。
  • 支持C ++C#,JavaPython

缺点

  • 它以一种新的语言——Network Description LanguageNDL)来实现。
  • 缺乏可视化。

3. Theano


数值计算库

语言Python

TheanoTensorFlow的强有力竞争者,它是一个功能强大的Python库,允许以高效率的方式进行多维数组的数值操作。

该库透明地使用GPU来执行数据密集型计算而不是CPU,因此操作效率很高。出于这个原因,Theano已经被用于为大规模的计算密集型操作长达十年的时间。然而,于二零一七年九月, Theano1.0版本停止。

但这并不意味着它不再是一个强大的图书馆,你仍然可以随时进行深入的学习研究,在这里了解更多


优点

  • 优化CPUGPU
  • 有效的计算任务。

缺点

  • 与其他库相比,原生Theano有点低级。
  • 需要与其他库一起使用以获得高度的抽象。
  • AWS使用它上有点bug

4. Caffe

快速,开放的深度学习框架

语言C ++

Caffe是一个强大的深度学习框架,像这个清单上的其他框架一样,深度学习的研究速度非常快。

借助Caffe,你可以非常轻松地构建用于图像分类的卷积神经网络(CNN)。CaffeGPU上运行的也很不错,这有助于在运行期间提高速度。查看主页获取更多信息

Caffe主类:


优点

  • PythonMATLAB都可用。
  • 表现的很好。
  • 无需编写代码即可进行模型的训练。

缺点

  • 对于RNN网络不太友好。
  • 对于新体系结构不太友好。

5. Keras

为人类普及深度学习

语言Python

Keras是一个用Python编写的开源的神经网络库。与TensorFlowCNTKTheano不同,Keras并不意味着是一个端到端的机器学习框架。

相反,它作为一个接口,提供了一个高层次的抽象,这使得神经网络的配置变得简单,无论它坐在哪个框架上。

谷歌的TensorFlow目前支持Keras作为后端,而微软的CNTK也会在很短的时间内做到这一点。在这里了解更多


优点

  • 它对用户非常友好。
  • 它很容易扩展。
  • CPUGPU上无缝运行。
  • TheanoTensorFlow无缝工作。

缺点

  • 不能有效地用作独立的框架。

6.Torch

一个开源的机器学习库

语言C.

Torch是一个用于科学和数字操作的开源机器学习库。

这是一个基于Lua编程语言的库而不是Python

它通过提供大量的算法,使得深度学习研究更容易,并且提高了效率和速度。它有一个强大的N维数组,这有助于切片和索引等操作。它还提供了线性代数程序和神经网络模型。快来看看


优点

  • 非常灵活。
  • 高水平的速度和效率。
  • 大量的预训练模型可用。

缺点

  • 缺乏即时使用的代码。
  • 它基于一种不那么流行的语言,Lua

7. Accord.NET

机器学习,计算机视觉,统计和.NET通用科学计算

语言C#。

这里是一个为C#程序员存在的机器学习框架。Accord.NET框架是一个.NET机器学习框架,使音频和图像处理变得简单。

这个框架可以有效地处理数值优化,人工神经网络,甚至可视化。除此之外,Accord.NET对计算机视觉和信号处理功能非常强大,同时也使得算法的实现变得简单。查看主页面


优点

  • 它有一个庞大而积极的开发团队。
  • 有据可查的框架。
  • 有质量可视化。

缺点

  • 不是一个非常流行的框架。
  • TensorFlow慢。

8. Spark MLlib

可扩展的机器学习库

语言Scala

ApacheSpark MLlib是一个非常可扩展的机器学习库。它非常适用于JavaScalaPython甚至R等语言。它非常高效,因为它可以与Python库和R库中的numpy进行互操作。

MLlib可以轻松插入到Hadoop工作流程中。它还提供了机器学习算法,如分类,回归和聚类。这个强大的库在处理大型数据时非常快速。在网站上了解更多信息


优点

  • 对于大规模数据非常快速。
  • 提供支持多种语言。

缺点

  • 不是很完美的学习曲线。
  • 即插即用仅适用于Hadoop

9. Sci-kit学习

Python进行机器学习

语言Python

Sci-kit learn是一个非常强大的机器学习Python库,主要用于构建模型。

使用numpySciPymatplotlib等其他库构建,对统计建模技术(如分类,回归和聚类)非常有效。

Sci-kit学习带有监督学习算法,无监督学习算法和交叉验证等功能。点击查看官网

优点

  • 许多主要算法的可用性很高。
  • 能够进行有效的数据挖掘。

缺点

  • 不是创建模型的最佳选择。
  • GPU效率不高。

10. MLPack

可扩展的C ++机器学习库

语言C ++

MLPack是一个用C ++实现的可扩展的机器学习库,因为它是用C ++编写的,所以你可以猜测到它对于内存管理的非常好。

MLPack以极高的速度运行,可以支持高质量的机器学习算法与库一起运行。这个库对新手是友好的,它还提供了一个简单的API帮助新手使用。官网可以查看


优点

  • 非常容易扩展。
  • PythonC ++都可用。

缺点

  • 没有具体的参考资料。

本文由阿里云云栖社区组织翻译。

文章原标题《progressive-tools10-best-frameworks-and-libraries

作者 Anton Shaleynikov

译者:虎说八道,审校:

文章为简译,更为详细的内容,请查看

相关实践学习
在云上部署ChatGLM2-6B大模型(GPU版)
ChatGLM2-6B是由智谱AI及清华KEG实验室于2023年6月发布的中英双语对话开源大模型。通过本实验,可以学习如何配置AIGC开发环境,如何部署ChatGLM2-6B大模型。
相关文章
|
3月前
|
人工智能 JavaScript 测试技术
Cradle:颠覆AI Agent 操作本地软件,AI驱动的通用计算机控制框架,如何让基础模型像人一样操作你的电脑?
Cradle 是由 BAAI‑Agents 团队开源的通用计算机控制(GCC)多模态 AI Agent 框架,具备视觉输入、键鼠操作输出、自主学习与反思能力,可操作各类本地软件及游戏,实现任务自动化与复杂逻辑执行。
261 6
|
2月前
|
人工智能 Java 开发者
阿里出手!Java 开发者狂喜!开源 AI Agent 框架 JManus 来了,初次见面就心动~
JManus是阿里开源的Java版OpenManus,基于Spring AI Alibaba框架,助力Java开发者便捷应用AI技术。支持多Agent框架、网页配置、MCP协议及PLAN-ACT模式,可集成多模型,适配阿里云百炼平台与本地ollama。提供Docker与源码部署方式,具备无限上下文处理能力,适用于复杂AI场景。当前仍在完善模型配置等功能,欢迎参与开源共建。
1080 58
阿里出手!Java 开发者狂喜!开源 AI Agent 框架 JManus 来了,初次见面就心动~
|
2月前
|
人工智能 运维 Java
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
本文基于Apache Flink PMC成员宋辛童在Community Over Code Asia 2025的演讲,深入解析Flink Agents项目的技术背景、架构设计与应用场景。该项目聚焦事件驱动型AI智能体,结合Flink的实时处理能力,推动AI在工业场景中的工程化落地,涵盖智能运维、直播分析等典型应用,展现其在AI发展第四层次——智能体AI中的重要意义。
818 27
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
|
2月前
|
人工智能 数据可视化 数据处理
AI智能体框架怎么选?7个主流工具详细对比解析
大语言模型需借助AI智能体实现“理解”到“行动”的跨越。本文解析主流智能体框架,从RelevanceAI、smolagents到LangGraph,涵盖技术门槛、任务复杂度、社区生态等选型关键因素,助你根据项目需求选择最合适的开发工具,构建高效、可扩展的智能系统。
507 3
AI智能体框架怎么选?7个主流工具详细对比解析
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
AI Compass前沿速览:IndexTTS2–B站、HuMo、Stand-In视觉生成框架、Youtu-GraphRAG、MobileLLM-R1–Meta、PP-OCRv5
AI Compass前沿速览:IndexTTS2–B站、HuMo、Stand-In视觉生成框架、Youtu-GraphRAG、MobileLLM-R1–Meta、PP-OCRv5
220 10
AI Compass前沿速览:IndexTTS2–B站、HuMo、Stand-In视觉生成框架、Youtu-GraphRAG、MobileLLM-R1–Meta、PP-OCRv5
|
23天前
|
人工智能 JavaScript 前端开发
GenSX (不一样的AI应用框架)架构学习指南
GenSX 是一个基于 TypeScript 的函数式 AI 工作流框架,以“函数组合替代图编排”为核心理念。它通过纯函数组件、自动追踪与断点恢复等特性,让开发者用自然代码构建可追溯、易测试的 LLM 应用。支持多模型集成与插件化扩展,兼具灵活性与工程化优势。
103 6
|
3月前
|
人工智能 自然语言处理 机器人
AI Compass前沿速览:Jetson Thor英伟达AI计算、Gemini 2.5 Flash Image、Youtu腾讯智能体框架、Wan2.2-S2V多模态视频生成、SpatialGen 3D场景生成模型
AI Compass前沿速览:Jetson Thor英伟达AI计算、Gemini 2.5 Flash Image、Youtu腾讯智能体框架、Wan2.2-S2V多模态视频生成、SpatialGen 3D场景生成模型
AI Compass前沿速览:Jetson Thor英伟达AI计算、Gemini 2.5 Flash Image、Youtu腾讯智能体框架、Wan2.2-S2V多模态视频生成、SpatialGen 3D场景生成模型
|
3月前
|
人工智能 前端开发 Java
构建能源领域的AI专家:一个多智能体框架的实践与思考
本文介绍了作者团队在能源领域构建多智能体(Multi-Agent)框架的实践经验。面对单智能体处理复杂任务时因“注意力发散”导致的效率低下问题,团队设计了一套集“规划-调度-执行-汇总”于一体的多智能体协作系统。
437 19
|
4月前
|
人工智能 自然语言处理 API
AI-Compass LLM推理框架+部署生态:整合vLLM、SGLang、LMDeploy等顶级加速框架,涵盖本地到云端全场景部署
AI-Compass LLM推理框架+部署生态:整合vLLM、SGLang、LMDeploy等顶级加速框架,涵盖本地到云端全场景部署
AI-Compass LLM推理框架+部署生态:整合vLLM、SGLang、LMDeploy等顶级加速框架,涵盖本地到云端全场景部署

热门文章

最新文章

下一篇
开通oss服务