流行AI框架和库的优缺点比较-阿里云开发者社区

开发者社区> 人工智能> 正文
登录阅读全文

流行AI框架和库的优缺点比较

简介: 不知道自己应该选用那个AI框架和库?看看本文就行了,本文为AI开发的工程师们梳理了现在最流行的框架,并简单的分析了它们的优缺点。

人工智能已经存在很长时间,然而,由于这一领域的巨大发展,近年来它已成为一个流行语。人工智能曾经被称为一个书呆子和天才领域,但由于各种库和框架的发展,它已成为一个友好的IT领域,更多的人开始了他们的人工智能之旅。

在这篇文章中,我们将研究人工智能的高质量库的优点和缺点,以及它们的一些特点。

1. TensorFlow

23fe25ef5a015cc8bbdfd72c9575e989811fbd37

使用数据流图计算进行机器学习

语言C ++Python

当你进入AI时,你会听到的第一个框架之一就是GoogleTensorFlowTensorFlow是一个使用数据流图进行数值计算的开源框架。这个框架被称为具有允许在任何CPUGPU上进行计算的架构,无论是台式机,服务器还是移动设备,另外这个框架在Python编程语言中是可用的,这也是Python大火的原因。

TensorFlow是通过称为节点的数据层进行排序,并根据获得的信息做出决定。这是它的官网

cb3131c20a7e56326fc1a56128edce56a8dea842

优点

  • 使用易于学习的语言(Python)。
  • 使用计算图抽象。
  • 可以使用可视化的TensorBoard

缺点

  • 它很慢,因为Python不是编程语言中最快的。
  • 缺乏许多预先训练的模型。
  • 不完全开源。

2.CNTK

7fbc2578854fea0b6cef660cc07936389dc68185

开源深度学习工具包

语言C ++

我们可以称之为它是微软对GoogleTensorFlow的回应。

微软的CNTK是一个增强分离计算网络模块化和维护的库,它提供了学习算法和模型描述。在需要大量服务器进行操作的情况下,CNTK可以同时利用多台服务器。

据说它的功能与GoogleTensorFlow相近,但是,它更快,在这里了解更多

899e44e5cddae0ef6b9b7d10277ad0e4517310d9

优点

  • 非常灵活。
  • 允许分布式培训。
  • 支持C ++C#,JavaPython

缺点

  • 它以一种新的语言——Network Description LanguageNDL)来实现。
  • 缺乏可视化。

3. Theano

e5d60040656c1683f7bc7f9919bfe0cdd4ed73ef

数值计算库

语言Python

TheanoTensorFlow的强有力竞争者,它是一个功能强大的Python库,允许以高效率的方式进行多维数组的数值操作。

该库透明地使用GPU来执行数据密集型计算而不是CPU,因此操作效率很高。出于这个原因,Theano已经被用于为大规模的计算密集型操作长达十年的时间。然而,于二零一七年九月, Theano1.0版本停止。

但这并不意味着它不再是一个强大的图书馆,你仍然可以随时进行深入的学习研究,在这里了解更多

626d98d2ac893927c22c6977ba5ded576ec08da7

优点

  • 优化CPUGPU
  • 有效的计算任务。

缺点

  • 与其他库相比,原生Theano有点低级。
  • 需要与其他库一起使用以获得高度的抽象。
  • AWS使用它上有点bug

4. Caffe

快速,开放的深度学习框架

语言C ++

Caffe是一个强大的深度学习框架,像这个清单上的其他框架一样,深度学习的研究速度非常快。

借助Caffe,你可以非常轻松地构建用于图像分类的卷积神经网络(CNN)。CaffeGPU上运行的也很不错,这有助于在运行期间提高速度。查看主页获取更多信息

Caffe主类:

b06892a33f5b929b1af77ca166c34c267974ab29

优点

  • PythonMATLAB都可用。
  • 表现的很好。
  • 无需编写代码即可进行模型的训练。

缺点

  • 对于RNN网络不太友好。
  • 对于新体系结构不太友好。

5. Keras

为人类普及深度学习

语言Python

Keras是一个用Python编写的开源的神经网络库。与TensorFlowCNTKTheano不同,Keras并不意味着是一个端到端的机器学习框架。

相反,它作为一个接口,提供了一个高层次的抽象,这使得神经网络的配置变得简单,无论它坐在哪个框架上。

谷歌的TensorFlow目前支持Keras作为后端,而微软的CNTK也会在很短的时间内做到这一点。在这里了解更多

a46a5f89a9d70a7d0b4c7610e44a6dbd4d41fb5b

优点

  • 它对用户非常友好。
  • 它很容易扩展。
  • CPUGPU上无缝运行。
  • TheanoTensorFlow无缝工作。

缺点

  • 不能有效地用作独立的框架。

6.Torch

一个开源的机器学习库

语言C.

Torch是一个用于科学和数字操作的开源机器学习库。

这是一个基于Lua编程语言的库而不是Python

它通过提供大量的算法,使得深度学习研究更容易,并且提高了效率和速度。它有一个强大的N维数组,这有助于切片和索引等操作。它还提供了线性代数程序和神经网络模型。快来看看

27145dad7f0c739adfc21368a765989500cee951

优点

  • 非常灵活。
  • 高水平的速度和效率。
  • 大量的预训练模型可用。

缺点

  • 缺乏即时使用的代码。
  • 它基于一种不那么流行的语言,Lua

7. Accord.NET

机器学习,计算机视觉,统计和.NET通用科学计算

语言C#。

这里是一个为C#程序员存在的机器学习框架。Accord.NET框架是一个.NET机器学习框架,使音频和图像处理变得简单。

这个框架可以有效地处理数值优化,人工神经网络,甚至可视化。除此之外,Accord.NET对计算机视觉和信号处理功能非常强大,同时也使得算法的实现变得简单。查看主页面

c4da1b29103f72f3ea311803d4b77efcf77f0e24

优点

  • 它有一个庞大而积极的开发团队。
  • 有据可查的框架。
  • 有质量可视化。

缺点

  • 不是一个非常流行的框架。
  • TensorFlow慢。

8. Spark MLlib

可扩展的机器学习库

语言Scala

ApacheSpark MLlib是一个非常可扩展的机器学习库。它非常适用于JavaScalaPython甚至R等语言。它非常高效,因为它可以与Python库和R库中的numpy进行互操作。

MLlib可以轻松插入到Hadoop工作流程中。它还提供了机器学习算法,如分类,回归和聚类。这个强大的库在处理大型数据时非常快速。在网站上了解更多信息

d25685d46335b7cd22464353a829b00310abe541

优点

  • 对于大规模数据非常快速。
  • 提供支持多种语言。

缺点

  • 不是很完美的学习曲线。
  • 即插即用仅适用于Hadoop

9. Sci-kit学习

Python进行机器学习

语言Python

Sci-kit learn是一个非常强大的机器学习Python库,主要用于构建模型。

使用numpySciPymatplotlib等其他库构建,对统计建模技术(如分类,回归和聚类)非常有效。

Sci-kit学习带有监督学习算法,无监督学习算法和交叉验证等功能。点击查看官网

优点

  • 许多主要算法的可用性很高。
  • 能够进行有效的数据挖掘。

缺点

  • 不是创建模型的最佳选择。
  • GPU效率不高。

10. MLPack

可扩展的C ++机器学习库

语言C ++

MLPack是一个用C ++实现的可扩展的机器学习库,因为它是用C ++编写的,所以你可以猜测到它对于内存管理的非常好。

MLPack以极高的速度运行,可以支持高质量的机器学习算法与库一起运行。这个库对新手是友好的,它还提供了一个简单的API帮助新手使用。官网可以查看

516c4a20f67db4d68a97e3306db8b6bc34960aab

优点

  • 非常容易扩展。
  • PythonC ++都可用。

缺点

  • 没有具体的参考资料。

本文由阿里云云栖社区组织翻译。

文章原标题《progressive-tools10-best-frameworks-and-libraries

作者 Anton Shaleynikov

译者:虎说八道,审校:

文章为简译,更为详细的内容,请查看原文

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

分享: