Finding Similar Items 文本相似度计算的算法——机器学习、词向量空间cosine、NLTK、diff、Levenshtein距离

简介:

http://infolab.stanford.edu/~ullman/mmds/ch3.pdf 汇总于此 还有这本书 http://www-nlp.stanford.edu/IR-book/ 里面有词向量空间 SVM 等介绍

http://pages.cs.wisc.edu/~dbbook/openAccess/thirdEdition/slides/slides3ed-english/Ch27b_ir2-vectorspace-95.pdf 专门介绍向量空间

https://courses.cs.washington.edu/courses/cse573/12sp/lectures/17-ir.pdf 也提到了其他思路 貌似类似语音识别的统计模型

使用深度学习来做文档相似度计算 https://cs224d.stanford.edu/reports/PoulosJackson.pdf 还有这里 http://www.cms.waikato.ac.nz/~ml/publications/2012/JASIST2012.pdf

网页里直接比较文本相似度的 http://www.scurtu.it/documentSimilarity.html

这里汇总了一些回答 http://stackoverflow.com/questions/8897593/similarity-between-two-text-documents  包括利用NLP NLTK库来做,或者是diff,skylearn词向量空间+cos

http://stackoverflow.com/questions/1844194/get-cosine-similarity-between-two-documents-in-lucene 也有cosine相似度计算方法

lucene 3 里的cosine相似度计算方法 https://darakpanand.wordpress.com/2013/06/01/document-comparison-by-cosine-methodology-using-lucene/#more-53 注意:4和3的计算方法不一样

向量空间模型(http://stackoverflow.com/questions/10649898/better-way-of-calculating-document-similarity-using-lucene):

Once you've got your data components properly standardized, then you can worry about what's better: fuzzy match, Levenshtein distance, or cosine similarity (etc.)

As I told you in my comment, I think you made a mistake somewhere. The vectors actually contain the <word,frequency> pairs, not words only. Therefore, when you delete the sentence, only the frequency of the corresponding words are subtracted by 1 (the words after are not shifted). Consider the following example:

Document a:

A B C A A B C. D D E A B. D A B C B A.

Document b:

A B C A A B C. D A B C B A.

Vector a:

A:6, B:5, C:3, D:3, E:1

Vector b:

A:5, B:4, C:3, D:1, E:0

Which result in the following similarity measure:

(6*5+5*4+3*3+3*1+1*0)/(Sqrt(6^2+5^2+3^2+3^2+1^2) Sqrt(5^2+4^2+3^2+1^2+0^2))=
62/(8.94427*7.14143)=
0.970648

 

lucene里 more like this:

you may want to check the MoreLikeThis feature of lucene.

MoreLikeThis constructs a lucene query based on terms within a document to find other similar documents in the index.

http://lucene.apache.org/java/3_0_1/api/contrib-queries/org/apache/lucene/search/similar/MoreLikeThis.html

Sample code example (java reference) -

MoreLikeThis mlt = new MoreLikeThis(reader); // Pass the index reader
mlt.setFieldNames(new String[] {"title", "author"}); // specify the fields for similiarity

Query query = mlt.like(docID); // Pass the doc id 
TopDocs similarDocs = searcher.search(query, 10); // Use the searcher
if (similarDocs.totalHits == 0)
    // Do handling
}

 

http://stackoverflow.com/questions/1844194/get-cosine-similarity-between-two-documents-in-lucene 提到: 

i have built an index in Lucene. I want without specifying a query, just to get a score (cosine similarity or another distance?) between two documents in the index.

For example i am getting from previously opened IndexReader ir the documents with ids 2 and 4. Document d1 = ir.document(2); Document d2 = ir.document(4);

How can i get the cosine similarity between these two documents?

Thank you

 

When indexing, there's an option to store term frequency vectors.

During runtime, look up the term frequency vectors for both documents using IndexReader.getTermFreqVector(), and look up document frequency data for each term using IndexReader.docFreq(). That will give you all the components necessary to calculate the cosine similarity between the two docs.

An easier way might be to submit doc A as a query (adding all words to the query as OR terms, boosting each by term frequency) and look for doc B in the result set.

 

 

As Julia points out Sujit Pal's example is very useful but the Lucene 4 API has substantial changes. Here is a version rewritten for Lucene 4.

import java.io.IOException;
import java.util.*;

import org.apache.commons.math3.linear.*;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.core.SimpleAnalyzer;
import org.apache.lucene.document.*;
import org.apache.lucene.document.Field.Store;
import org.apache.lucene.index.*;
import org.apache.lucene.store.*;
import org.apache.lucene.util.*;

public class CosineDocumentSimilarity {

    public static final String CONTENT = "Content";

    private final Set<String> terms = new HashSet<>();
    private final RealVector v1;
    private final RealVector v2;

    CosineDocumentSimilarity(String s1, String s2) throws IOException {
        Directory directory = createIndex(s1, s2);
        IndexReader reader = DirectoryReader.open(directory);
        Map<String, Integer> f1 = getTermFrequencies(reader, 0);
        Map<String, Integer> f2 = getTermFrequencies(reader, 1);
        reader.close();
        v1 = toRealVector(f1);
        v2 = toRealVector(f2);
    }

    Directory createIndex(String s1, String s2) throws IOException {
        Directory directory = new RAMDirectory();
        Analyzer analyzer = new SimpleAnalyzer(Version.LUCENE_CURRENT);
        IndexWriterConfig iwc = new IndexWriterConfig(Version.LUCENE_CURRENT,
                analyzer);
        IndexWriter writer = new IndexWriter(directory, iwc);
        addDocument(writer, s1);
        addDocument(writer, s2);
        writer.close();
        return directory;
    }

    /* Indexed, tokenized, stored. */
    public static final FieldType TYPE_STORED = new FieldType();

    static {
        TYPE_STORED.setIndexed(true);
        TYPE_STORED.setTokenized(true);
        TYPE_STORED.setStored(true);
        TYPE_STORED.setStoreTermVectors(true);
        TYPE_STORED.setStoreTermVectorPositions(true);
        TYPE_STORED.freeze();
    }

    void addDocument(IndexWriter writer, String content) throws IOException {
        Document doc = new Document();
        Field field = new Field(CONTENT, content, TYPE_STORED);
        doc.add(field);
        writer.addDocument(doc);
    }

    double getCosineSimilarity() {
        return (v1.dotProduct(v2)) / (v1.getNorm() * v2.getNorm());
    }

    public static double getCosineSimilarity(String s1, String s2)
            throws IOException {
        return new CosineDocumentSimilarity(s1, s2).getCosineSimilarity();
    }

    Map<String, Integer> getTermFrequencies(IndexReader reader, int docId)
            throws IOException {
        Terms vector = reader.getTermVector(docId, CONTENT);
        TermsEnum termsEnum = null;
        termsEnum = vector.iterator(termsEnum);
        Map<String, Integer> frequencies = new HashMap<>();
        BytesRef text = null;
        while ((text = termsEnum.next()) != null) {
            String term = text.utf8ToString();
            int freq = (int) termsEnum.totalTermFreq();
            frequencies.put(term, freq);
            terms.add(term);
        }
        return frequencies;
    }

    RealVector toRealVector(Map<String, Integer> map) {
        RealVector vector = new ArrayRealVector(terms.size());
        int i = 0;
        for (String term : terms) {
            int value = map.containsKey(term) ? map.get(term) : 0;
            vector.setEntry(i++, value);
        }
        return (RealVector) vector.mapDivide(vector.getL1Norm());
    }
}


















本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/6423490.html ,如需转载请自行联系原作者

相关文章
|
5天前
|
JavaScript 前端开发 算法
React技术栈-虚拟DOM和DOM diff算法
这篇文章介绍了React技术栈中的虚拟DOM和DOM diff算法,并通过一个实际案例展示了如何使用React组件和状态管理来实现动态更新UI。
20 2
|
9天前
|
JavaScript 前端开发 算法
react中虚拟dom和diff算法
在React中,虚拟DOM(Virtual DOM)和Diff算法是两个核心概念,它们共同工作以提高应用的性能和效率。
19 4
|
10天前
|
机器学习/深度学习 算法 数据挖掘
8个常见的机器学习算法的计算复杂度总结
8个常见的机器学习算法的计算复杂度总结
8个常见的机器学习算法的计算复杂度总结
|
1天前
|
机器学习/深度学习 数据采集 算法
数据挖掘和机器学习算法
数据挖掘和机器学习算法
|
9天前
|
前端开发 算法 JavaScript
React原理之Diff算法
【8月更文挑战第24天】
|
4天前
|
机器学习/深度学习 数据采集 存储
一文读懂蒙特卡洛算法:从概率模拟到机器学习模型优化的全方位解析
蒙特卡洛方法起源于1945年科学家斯坦尼斯劳·乌拉姆对纸牌游戏中概率问题的思考,与约翰·冯·诺依曼共同奠定了该方法的理论基础。该方法通过模拟大量随机场景来近似复杂问题的解,因命名灵感源自蒙特卡洛赌场。如今,蒙特卡洛方法广泛应用于机器学习领域,尤其在超参数调优、贝叶斯滤波等方面表现出色。通过随机采样超参数空间,蒙特卡洛方法能够高效地找到优质组合,适用于处理高维度、非线性问题。本文通过实例展示了蒙特卡洛方法在估算圆周率π和优化机器学习模型中的应用,并对比了其与网格搜索方法的性能。
64 1
|
10天前
|
机器学习/深度学习 算法 数据挖掘
机器学习必知必会10大算法
机器学习必知必会10大算法
|
11天前
|
机器学习/深度学习 算法 数据挖掘
【白话机器学习】算法理论+实战之决策树
【白话机器学习】算法理论+实战之决策树
|
18天前
|
JavaScript 算法 前端开发
"揭秘Vue.js的高效渲染秘诀:深度解析Diff算法如何让前端开发快人一步"
【8月更文挑战第20天】Vue.js是一款备受欢迎的前端框架,以其声明式的响应式数据绑定和组件化开发著称。在Vue中,Diff算法是核心之一,它高效计算虚拟DOM更新时所需的最小实际DOM变更,确保界面快速准确更新。算法通过比较新旧虚拟DOM树的同层级节点,递归检查子节点,并利用`key`属性优化列表更新。虽然存在局限性,如难以处理跨层级节点移动,但Diff算法仍是Vue高效更新机制的关键,帮助开发者构建高性能Web应用。
32 1
|
18天前
|
JavaScript 算法 索引
【Vue面试题二十三】、你了解vue的diff算法吗?说说看
这篇文章深入分析了Vue中的diff算法,解释了其在新旧虚拟DOM节点比较中的工作机制,包括同层节点比较、循环向中间收拢的策略,并通过实例演示了diff算法的执行过程,同时提供了源码层面的解析,说明了当数据变化时,如何通过Watcher触发patch函数来更新DOM。
【Vue面试题二十三】、你了解vue的diff算法吗?说说看

热门文章

最新文章

下一篇
DDNS