一文读懂蒙特卡洛算法:从概率模拟到机器学习模型优化的全方位解析

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 蒙特卡洛方法起源于1945年科学家斯坦尼斯劳·乌拉姆对纸牌游戏中概率问题的思考,与约翰·冯·诺依曼共同奠定了该方法的理论基础。该方法通过模拟大量随机场景来近似复杂问题的解,因命名灵感源自蒙特卡洛赌场。如今,蒙特卡洛方法广泛应用于机器学习领域,尤其在超参数调优、贝叶斯滤波等方面表现出色。通过随机采样超参数空间,蒙特卡洛方法能够高效地找到优质组合,适用于处理高维度、非线性问题。本文通过实例展示了蒙特卡洛方法在估算圆周率π和优化机器学习模型中的应用,并对比了其与网格搜索方法的性能。

爱德华·蒙克(Edvard Munch)的"蒙特卡洛赌场的轮盘桌"(1892)

蒙特卡洛方法的起源与发展

1945年,在第二次世界大战即将结束之际,一场看似简单的纸牌游戏引发了计算领域的重大突破。这项突破最终导致了蒙特卡洛方法的诞生。参与曼哈顿计划的科学家斯坦尼斯劳·乌拉姆在康复期间深入思考了纸牌游戏中的概率问题。他意识到通过反复模拟,可以有效地近似复杂的概率问题。随后乌拉姆与同事约翰·冯·诺依曼讨论了这一想法,共同奠定了蒙特卡洛方法的理论基础。该方法的命名灵感来自摩纳哥著名的蒙特卡洛赌场,象征着其处理高风险和不确定性的特性。

时至今日,蒙特卡洛方法已成为机器学习领域的关键工具,在强化学习、贝叶斯滤波和复杂模型优化等方面有广泛应用。其强大的适应性和多样性使其在诞生七十多年后仍然保持着重要地位。从乌拉姆的纸牌游戏到现代复杂的人工智能应用,蒙特卡洛方法持续证明了其在处理复杂系统中的价值。

蒙特卡洛模拟的基本原理

在数据科学和机器学习领域,蒙特卡洛模拟提供了一种处理不确定性的有效方法。这种统计技术允许我们在面对复杂问题时,通过概率性方法进行决策。本文将深入探讨蒙特卡洛模拟的原理,并展示其在统计和机器学习中的实际应用。

我们首先会详细介绍蒙特卡洛模拟的理论基础,阐明其作为强大问题解决工具的核心原理。然后将通过Python实现来展示蒙特卡洛模拟的实际应用。

最后我们将重点讨论如何利用蒙特卡洛模拟来优化机器学习模型。特别是在超参数调优这一常见挑战中,蒙特卡洛方法如何提供有效的解决方案。

理解蒙特卡洛模拟

蒙特卡洛模拟是数学家和数据科学家常用的一种重要技术。它提供了一种在复杂可能性空间中进行探索的方法,通过形成基于概率的假设并逐步优化选择来寻找最佳解决方案。

这种方法的核心是生成大量随机场景,遵循预定义的过程,然后分析这些场景以估计各种结果的概率。一个形象的类比是将每个场景视为"狼人杀"游戏中的一轮。在这个游戏中,玩家通过收集证据来推断细节。每一轮都会排除某些可能性,使玩家逐步接近真相。同样,蒙特卡洛模拟中的每次迭代都提供了使我们更接近复杂问题解决方案的信息。

在机器学习领域,这些"场景"可以代表不同的模型配置、各种超参数集、数据集分割方法等。通过评估这些场景的结果,我们可以深入了解机器学习算法的行为,从而做出更明智的优化决策。

实例:估算圆周率π

为了直观理解蒙特卡洛模拟,我们可以考虑一个估算π值的例子。想象一个特殊的飞镖游戏:你被蒙上眼睛,随机向一个大正方形飞镖靶投掷飞镖。这个正方形内有一个圆形目标。目标是通过这个游戏来估计π的值。

圆的面积与正方形面积的比率是π/4。因此,如果投掷大量飞镖,落在圆内的飞镖数量与总飞镖数量的比率应该近似于π/4。将这个比率乘以4,就得到了π的估计值。

随机猜测 vs. 蒙特卡洛方法

为了展示蒙特卡洛模拟的优势,我们将其与简单的随机猜测方法进行比较。以下代码实现了这两种方法:

 #Random Guessing of Pi  

 # 导入必要的库
 importrandom
 importplotly.graph_objectsasgo
 importnumpyasnp

 # 设置猜测次数
 num_guesses=6

 # 生成单位圆的坐标
 theta=np.linspace(0, 2*np.pi, 100)
 unit_circle_x=np.cos(theta)
 unit_circle_y=np.sin(theta)

 # 进行多次猜测
 foriinrange(num_guesses):
     # 在2到4之间随机猜测pi的值
     pi_guess=random.uniform(2, 4)

     # 根据猜测生成圆的坐标
     radius=pi_guess/4
     circle_x=radius*np.cos(theta)
     circle_y=radius*np.sin(theta)

     # 创建散点图
     fig=go.Figure()

     # 添加猜测的圆
     fig.add_trace(go.Scatter(
         x=circle_x,
         y=circle_y,
         mode='lines',
         line=dict(
             color='blue',
             width=3
         ),
         name='Estimated Circle'
     ))

     # 添加单位圆
     fig.add_trace(go.Scatter(
         x=unit_circle_x,
         y=unit_circle_y,
         mode='lines',
         line=dict(
             color='green',
             width=3
         ),
         name='Unit Circle'
     ))

     # 更新图形布局
     fig.update_layout(
         title=f"Fig1{chr(97+i)}: Randomly Guessing Pi: {pi_guess}",
         width=600,
         height=600,
         xaxis=dict(
             constrain="domain",
             range=[-1, 1]
         ),
         yaxis=dict(
             scaleanchor="x",
             scaleratio=1,
             range=[-1, 1]
         )
     )

     # 显示图形
     fig.show()

这段代码生成了一系列图形(图1a到图1f),展示了随机猜测π值的结果。每次猜测都会生成一个不同大小的圆,与实际的单位圆(绿色)进行比较。






接下来,我们使用蒙特卡洛方法来估计π:

 #Monte Carlo Estimation of Pi

 # 导入必要的库
 importrandom
 importmath
 importplotly.graph_objectsasgo
 importplotly.ioaspio
 importnumpyasnp

 # 设置飞镖数量
 num_darts=10000
 darts_in_circle=0

 # 存储飞镖坐标
 x_coords_in, y_coords_in, x_coords_out, y_coords_out= [], [], [], []

 # 设置图形数量
 num_figures=6
 darts_per_figure=num_darts//num_figures

 # 生成单位圆
 theta=np.linspace(0, 2*np.pi, 100)
 unit_circle_x=np.cos(theta)
 unit_circle_y=np.sin(theta)

 # 模拟投掷飞镖
 foriinrange(num_darts):
     x, y=random.uniform(-1, 1), random.uniform(-1, 1)

     ifmath.sqrt(x**2+y**2) <=1:
         darts_in_circle+=1
         x_coords_in.append(x)
         y_coords_in.append(y)
     else:
         x_coords_out.append(x)
         y_coords_out.append(y)

     if (i+1) %darts_per_figure==0:
         pi_estimate=4*darts_in_circle/ (i+1)

         estimated_circle_radius=pi_estimate/4
         estimated_circle_x=estimated_circle_radius*np.cos(theta)
         estimated_circle_y=estimated_circle_radius*np.sin(theta)

         fig=go.Figure()


         fig.add_trace(go.Scattergl(x=x_coords_in, y=y_coords_in, mode='markers', name='Darts Inside Circle', marker=dict(color='green', size=4, opacity=0.8)))
         fig.add_trace(go.Scattergl(x=x_coords_out, y=y_coords_out, mode='markers', name='Darts Outside Circle', marker=dict(color='red', size=4, opacity=0.8)))


         fig.add_trace(go.Scatter(x=unit_circle_x, y=unit_circle_y, mode='lines', name='Unit Circle', line=dict(color='green', width=3)))
         fig.add_trace(go.Scatter(x=estimated_circle_x, y=estimated_circle_y, mode='lines', name='Estimated Circle', line=dict(color='blue', width=3)))


         fig.update_layout(title=f"Figure {chr(97+ (i+1) //darts_per_figure-1)}: Thrown Darts: {(i+1)}, Estimated Pi: {pi_estimate}", width=600, height=600, xaxis=dict(constrain="domain", range=[-1, 1]), yaxis=dict(scaleanchor="x", scaleratio=1, range=[-1, 1]), legend=dict(yanchor="top", y=0.99, xanchor="left", x=0.01))

         fig.show()

         pio.write_image(fig, f"fig2{chr(97+ (i+1) //darts_per_figure-1)}.png")

这段代码生成了另一系列图形(图2a到图2f),展示了使用蒙特卡洛方法估计π的过程。绿点表示落在圆内的飞镖,红点表示落在圆外的飞镖。






为了进一步验证蒙特卡洛方法的有效性,我们可以绘制一个图表,展示随着投掷飞镖数量的增加,估计值与真实π值之间的差异如何变化:

 # 计算估计值与真实π的差异
 diff_pi= [abs(estimate-math.pi) forestimateinpi_estimates]

 # 创建图表
 fig2g=go.Figure(data=go.Scatter(x=num_darts_thrown, y=diff_pi, mode='lines'))

 # 添加标题和标签
 fig2g.update_layout(
     title="Fig2g: Darts Thrown vs Difference in Estimated Pi",
     xaxis_title="Number of Darts Thrown",
     yaxis_title="Difference in Pi",
 )

 # 显示图表
 fig2g.show()

 # 保存图表
 pio.write_image(fig2g, "fig2g.png")

这个图表(图2g)展示了随着投掷飞镖数量的增加,估计值与真实π值之间的差异逐渐减小的趋势。

为了更全面地评估蒙特卡洛方法的性能,我们可以进行一个大规模的模拟:

 # 500个蒙特卡洛场景,共投掷1,000,000个飞镖
 importrandom
 importmath
 importplotly.graph_objectsasgo
 importnumpyasnp

 num_darts=1000000
 darts_in_circle=0

 num_scenarios=500
 darts_per_scenario=num_darts//num_scenarios

 darts_thrown_list= []
 pi_diff_list= []

 foriinrange(num_darts):
     x, y=random.uniform(-1, 1), random.uniform(-1, 1)

     ifmath.sqrt(x**2+y**2) <=1:
         darts_in_circle+=1

     if (i+1) %darts_per_scenario==0:
         pi_estimate=4*darts_in_circle/ (i+1)

         darts_thrown_list.append((i+1) /1000)
         pi_diff_list.append(abs(pi_estimate-math.pi))

 fig=go.Figure(data=go.Scattergl(x=darts_thrown_list, y=pi_diff_list, mode='markers'))

 fig.update_layout(
     title="Fig2h: Difference between Estimated and Actual Pi vs. Number of Darts Thrown (in thousands)",
     xaxis_title="Number of Darts Thrown (in thousands)",
     yaxis_title="Difference between Estimated and Actual Pi",
 )
 fig.show()
 pio.write_image(fig, "fig2h.png")

这个大规模模拟(图2h)清晰地展示了随着样本量增加,蒙特卡洛方法估计的精确度如何提高。

蒙特卡洛模拟在机器学习中的应用

蒙特卡洛模拟在机器学习领域有广泛的应用,其中一个重要应用是超参数调优。超参数是在机器学习算法训练之前需要设置的参数,它们不是通过训练过程学习得到的。例如在决策树中,树的最大深度是一个超参数;在神经网络中,学习率和隐藏层的数量都是超参数。

选择适当的超参数对模型性能有显著影响。一般来说研究者使用网格搜索或随机搜索来调整超参数。但是当超参数数量增加或取值范围扩大时,这些方法可能变得计算密集且耗时。蒙特卡洛模拟提供了一种更高效的替代方案,通过随机采样超参数空间,可以更快地找到优质的超参数组合。

下面我们将使用一个实际数据集来演示如何应用蒙特卡洛模拟进行超参数调优。

心脏病数据集分析

我们将使用UCI机器学习存储库中的心脏病数据集。这个数据集包含了患者的各种医疗指标,其中一些患有心脏病。数据集包含14个属性,如年龄、性别、胸痛类型、血压等。我们的目标是预测患者是否患有心脏病,这是一个二元分类问题。

首先,让我们加载并查看数据:

 importpandasaspd
 fromsklearn.model_selectionimporttrain_test_split
 fromsklearn.preprocessingimportStandardScaler, OneHotEncoder
 fromsklearn.composeimportColumnTransformer
 fromsklearn.pipelineimportPipeline
 fromsklearn.linear_modelimportLogisticRegression
 fromsklearn.model_selectionimportGridSearchCV
 fromsklearn.metricsimportroc_auc_score
 importnumpyasnp
 importplotly.graph_objectsasgo

 url="https://archive.ics.uci.edu/ml/machine-learning-databases/heart-disease/processed.cleveland.data"
 column_names= ["age", "sex", "cp", "trestbps", "chol", "fbs", "restecg", "thalach", "exang", "oldpeak", "slope", "ca", "thal", "target"]

 df=pd.read_csv(url, names=column_names, na_values="?")
 print(df.head())

数据预处理

在进行建模之前,我们需要对数据进行预处理:

 fromsklearn.imputeimportSimpleImputer
 fromsklearn.preprocessingimportLabelEncoder

 print(df.isnull().sum())

 imputer=SimpleImputer(strategy='median')
 df_filled=pd.DataFrame(imputer.fit_transform(df), columns=df.columns)

 print(df_filled.head())

 categorical_vars=df_filled.select_dtypes(include='object').columns
 encoder=LabelEncoder()
 forvarincategorical_vars:
     df_filled[var] =encoder.fit_transform(df_filled[var])

 scaler=StandardScaler()
 df_normalized=pd.DataFrame(scaler.fit_transform(df_filled), columns=df_filled.columns)

 print(df_normalized.head())

基准模型

我们首先建立一个基准逻辑回归模型:

 fromsklearn.model_selectionimporttrain_test_split
 fromsklearn.linear_modelimportLogisticRegression
 fromsklearn.metricsimportaccuracy_score, roc_auc_score

 df_normalized['target'] =df['target']
 df_normalized['target'] =df_normalized['target'].apply(lambdax: 1ifx>0else0)

 X=df_normalized.drop('target', axis=1)
 y=df_normalized['target']
 X_train, X_test, y_train, y_test=train_test_split(X, y, test_size=0.2, random_state=42)

 model=LogisticRegression()
 model.fit(X_train, y_train)

 y_pred=model.predict(X_test)

 accuracy=accuracy_score(y_test, y_pred)
 roc_auc=roc_auc_score(y_test, y_pred)

 print("Baseline Model "+f'Accuracy: {accuracy}')
 print("Baseline Model "+f'ROC-AUC: {roc_auc}')

使用网格搜索进行超参数调优

然后使用网格搜索方法进行超参数调优:

 fromsklearn.model_selectionimportGridSearchCV

 hyperparameters= {'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000], 
                    'penalty': ['l1', 'l2']}

 grid_search=GridSearchCV(LogisticRegression(), hyperparameters, cv=5, scoring='roc_auc')
 grid_search.fit(X_train, y_train)

 best_params=grid_search.best_params_
 print(f'Best hyperparameters: {best_params}')

 best_model=grid_search.best_estimator_
 y_pred_best=best_model.predict(X_test)
 accuracy_best=accuracy_score(y_test, y_pred_best)
 roc_auc_best=roc_auc_score(y_test, y_pred_best)

 print("Grid Search Method "+f'Accuracy of the best model: {accuracy_best}')
 print("Grid Search Method "+f'ROC-AUC of the best model: {roc_auc_best}')

使用蒙特卡洛方法进行超参数调优

最后应用蒙特卡洛方法进行超参数调优:

 fromsklearn.metricsimportaccuracy_score, roc_auc_score
 fromsklearn.linear_modelimportLogisticRegression
 fromsklearn.model_selectionimporttrain_test_split
 importnumpyasnp

 X_train, X_test, y_train, y_test=train_test_split(X, y, test_size=0.2, random_state=42)

 C_range=np.logspace(-3, 3, 7)
 penalty_options= ['l1', 'l2']

 best_score=0
 best_hyperparams=None

 for_inrange(1000):   
     C=np.random.choice(C_range)
     penalty=np.random.choice(penalty_options)

     model=LogisticRegression(C=C, penalty=penalty, solver='liblinear')
     model.fit(X_train, y_train)
     y_pred=model.predict(X_test)

     accuracy=accuracy_score(y_test, y_pred)
     roc_auc=roc_auc_score(y_test, y_pred)

     ifroc_auc>best_score:
         best_score=roc_auc
         best_hyperparams= {'C': C, 'penalty': penalty}

 print("Monte Carlo Method "+f'Best ROC-AUC: {best_score}')
 print("Monte Carlo Method "+f'Best hyperparameters: {best_hyperparams}')

 best_model=LogisticRegression(**best_hyperparams, solver='liblinear')
 best_model.fit(X_train, y_train)

 y_pred=best_model.predict(X_test)

 accuracy=accuracy_score(y_test, y_pred)
 print("Monte Carlo Method "+f'Accuracy of the best model: {accuracy}')

网格搜索与蒙特卡洛方法的比较

网格搜索方法通过评估超参数空间中所有可能组合的性能来选择"最佳"超参数。它使用交叉验证来评估每种组合在训练数据的不同子集上的平均性能。这种方法可以系统地探索整个超参数空间,但当超参数数量增加时,计算成本会急剧上升。

相比之下,蒙特卡洛方法随机采样超参数空间,并在整个训练集上评估模型性能。这种方法不使用交叉验证,因此可能更容易受到过拟合的影响。但是它能够更快地探索大型超参数空间,并且在计算资源有限的情况下可能更为实用。

在这个实验中蒙特卡洛方法的性能略优于网格搜索方法。这可能是因为蒙特卡洛方法能够探索更广泛的超参数组合,而不受预定义网格的限制。但是需要注意的是,这种性能差异可能因数据集和问题的不同而变化。

总结

蒙特卡洛方法源于一个简单的概率问题,已经发展成为解决复杂计算和优化问题的强大工具。在机器学习领域,特别是在超参数调优方面,蒙特卡洛方法展现出了其独特的优势。

通过本文的分析和实验,我们看到蒙特卡洛方法在估算π值和优化机器学习模型超参数等任务中的应用。这种方法的强大之处在于其能够有效地处理高维度、非线性的问题空间,为我们提供了一种在复杂系统中做出决策的有力工具。

然而,值得注意的是,蒙特卡洛方法并非万能的。在某些情况下,其他方法如网格搜索或贝叶斯优化可能更为适合。选择最佳方法应该基于具体问题、可用的计算资源以及对精度和效率的需求。

https://avoid.overfit.cn/post/679585d1481b411d88a43189e7680fb9

目录
相关文章
|
7天前
|
存储 关系型数据库 分布式数据库
PolarDB的PolarStore存储引擎以其高效的索引结构、优化的数据压缩算法、出色的事务处理能力著称
PolarDB的PolarStore存储引擎以其高效的索引结构、优化的数据压缩算法、出色的事务处理能力著称。本文深入解析PolarStore的内部机制及优化策略,包括合理调整索引、优化数据分布、控制事务规模等,旨在最大化其性能优势,提升数据存储与访问效率。
20 5
|
22天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
16天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
51 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
16天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
59 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
22天前
|
人工智能 算法 大数据
Linux内核中的调度算法演变:从O(1)到CFS的优化之旅###
本文深入探讨了Linux操作系统内核中进程调度算法的发展历程,聚焦于O(1)调度器向完全公平调度器(CFS)的转变。不同于传统摘要对研究背景、方法、结果和结论的概述,本文创新性地采用“技术演进时间线”的形式,简明扼要地勾勒出这一转变背后的关键技术里程碑,旨在为读者提供一个清晰的历史脉络,引领其深入了解Linux调度机制的革新之路。 ###
|
24天前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
65 4
|
1天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
2月前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
2月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
63 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练