DNS通道检测 国内学术界研究情况——研究方法:基于特征或者流量,使用机器学习决策树分类算法居多

本文涉及的产品
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
简介:

http://xuewen.cnki.net/DownloadArticle.aspx?filename=BMKJ201104017&dbtype=CJFD
《浅析基于DNS协议的隐蔽通道及监测技术》
DNS隐蔽通道监测主要采用特征匹配和流量异常检测这两种技术。
3.1 特征匹配技术
特 征 匹 配 技 术 通 过 网 络 通 信 报 文 特 征 来 识别 D N S 隐 蔽 通 道 。 S n o r t 通 过 以 下 规 则 来 识 别NSTX和Iodine隐蔽通道:
alert udp EXTERNALNETanyHOME_NET 53 (msg:"Potential NSTX DNS Tunneling";
content:"|01 00|"; offset:2; within:4; content:"c T"; offset:12; depth:3; content:"|00 10 00 01|";
within:255; 特 征 匹 配 技 术 的 优 点 是 准 确 性 高 , 能 够 具体地识别出DNS隐蔽通道名称,缺点是不能识别出 未 知 或 变 种 的 隐 蔽 通 道 。 对 于 开 源 的 隐 蔽 通道 来 说 , 改 变 网 络 通 信 特 征 是 轻 而 易 举 的 事 ,
特征匹配技术显然应对不了层出不穷的变种。
3.2 流量异常检测技术
流 量 异 常 检 测 技 术 根 据 异 常 流 量 特 征 来 识别DNS隐蔽通道。DNS隐蔽通道运行时,DNS报文 流 量 有 着 明 显 的 异 常 : 域 名 超 长 、 域 名 中 主机名部分有许多随机字符、DNS报文数量剧增、DNS报文长度加大、出现TXT、NULL 、EDNS0等类型的DNS报文等。这些都是流量异常监测需要重点关注的要素。内网网管可以通过Snort工具来监测这些流量异常情况。思科IDS在监测到大量TXT类型的DNS报文时产生告警。目 前 , 流 量 异 常 检 测 技 术 能 够 较 好 地 识 别DNS隐蔽通道。即便是新型的Heyoka,不再引发单个主机的DNS报文数量剧增,但也难以消除其 他 的 流 量 异 常 特 征 , 难 于 规 避 流 量 异 常 监 测设备的检测。


http://d.g.wanfangdata.com.cn/Periodical_wlaqjsyyy201501024.aspx
《探析基于DNS协议隐蔽通道的基本架构及监测技术》

使用规则库,规则集主要描述不同协议的流量特征、数据报文的时问特征以及报头特征,并且还包括通讯两端的地址、流量等信息。 
在当前隐蔽通道监测技术中,最常用的是特征匹配与基于数据流异常分析的监测技术。基于特征匹配的方法,通过建立记录网络隐蔽信道特征的数据库,将网络中的数据流与其对比,匹配结果为真的话则表示存在隐蔽通道。但是该种方法很难检测出经过变种的隐蔽通道。基于数据流异常的方法,主要通过监测网络中数据流的异常情况来产生报警信息。

 

http://d.g.wanfangdata.com.cn/Thesis_Y2247883.aspx 
《DNS异常行为检测的研究》
使用C4.5决策树分类器实现对隐藏信道的检测。对于基于服务的DNS隐藏信道提出通道流量的统计算法;对于基于域名的DNS隐藏信道,提出了基于机器学习的检测算法,该算法选择多个报文连接特征为检测测度,使用C4.5决策树分类器实现对隐藏信道的检测。

http://d.g.wanfangdata.com.cn/Periodical_txxb201305019.aspx
《基于DNS的隐蔽通道流量检测》

也是使用决策树模型来进行检测。研究了 DNS 隐蔽通信流量特性,提取可区分合法查询与隐蔽通信的 12 个数据分组特征,利用机器学习的分类器对其会话统计特性进行判别。

 

http://cdmd.cnki.com.cn/Article/CDMD-10013-1011121845.htm
《DNS攻击检测与防御技术研究》
北邮2011年的一篇硕士论文,通过对流量检测的异常检测角度进行分析,改进了信息熵异常检测方法,同时研究利用粗糙集理论知识进行DNS攻击检测,给出检测模型和实验结果。为了弥补异常检测对小流量攻击检测方面不准确性,结合误用检测思想,给出一个双通道检测模型,为DNS服务提供一个较全面、低误报率的攻击检测平台。


http://www.cas.stc.sh.cn/jsjyup/pdf/2011/6/%E4%B8%80%E7%A7%8D%E5%9F%BA%E4%BA%8ENDIS%E9%A9%B1%E5%8A%A8%E7%A8%8B%E5%BA%8F%E5%AE%9E%E7%8E%B0%E9%9A%90%E8%94%BD%E9%80%9A%E9%81%93%E7%9A%84%E6%96%B9%E6%B3%95.pdf
《基于DNS 协议隐蔽通道的性能分析》
原理介绍居多,关键信息:根据前面对DNS 隐蔽通道原理的分析,可知DNS 隐蔽通道的上传通道可以使用BASE-32 和二进制2 种编码方式,下传通道可以使用BASE-64 和二进制2 种编码方式。BASE-32 和BASE64 编码方式的通用性强,可以应用于所有标准DNS 系统,但通信效率较低。二进制方式的通信效率较高,但是其通用性较差,部分DNS 系统不支持二进制数据。DNS 隐蔽通道的上行通道每个请求数据包可携带的编码后有效数据长度大约240 Byte,下行通道每个应答数据包可携带的编码后有效数据长度大约250 Byte。相应上行通道的BASE-32 编码前有效数据长度约150 Byte,下行通道的BASE-64 编码前有效数据长度约158 Byte。

 















本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/7090438.html,如需转载请自行联系原作者


目录
打赏
0
0
0
0
64
分享
相关文章
机器学习特征筛选:向后淘汰法原理与Python实现
向后淘汰法(Backward Elimination)是机器学习中一种重要的特征选择技术,通过系统性地移除对模型贡献较小的特征,以提高模型性能和可解释性。该方法从完整特征集出发,逐步剔除不重要的特征,最终保留最具影响力的变量子集。其优势包括提升模型简洁性和性能,减少过拟合,降低计算复杂度。然而,该方法在高维特征空间中计算成本较高,且可能陷入局部最优解。适用于线性回归、逻辑回归等统计学习模型。
107 7
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
本文探讨了数据基础设施设计中常见的一个问题:数据仓库或数据湖仓中的表格缺乏构建高性能机器学习模型所需的历史记录,导致模型性能受限。为解决这一问题,文章介绍了缓慢变化维度(SCD)技术,特别是Type II类型的应用。通过SCD,可以有效追踪维度表的历史变更,确保模型训练数据包含完整的时序信息,从而提升预测准确性。文章还从数据工程师、数据科学家和产品经理的不同视角提供了实施建议,强调历史数据追踪对提升模型性能和业务洞察的重要性,并建议采用渐进式策略逐步引入SCD设计模式。
197 8
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
110 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
18个常用的强化学习算法整理:从基础方法到高级模型的理论技术与代码实现
本文系统讲解从基本强化学习方法到高级技术(如PPO、A3C、PlaNet等)的实现原理与编码过程,旨在通过理论结合代码的方式,构建对强化学习算法的全面理解。
57 10
18个常用的强化学习算法整理:从基础方法到高级模型的理论技术与代码实现
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
312 6
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
本内容主要介绍一种基于MobileNet深度学习网络的活体人脸识别检测技术及MQAM调制类型识别方法。完整程序运行效果无水印,需使用Matlab2022a版本。核心代码包含详细中文注释与操作视频。理论概述中提到,传统人脸识别易受非活体攻击影响,而MobileNet通过轻量化的深度可分离卷积结构,在保证准确性的同时提升检测效率。活体人脸与非活体在纹理和光照上存在显著差异,MobileNet可有效提取人脸高级特征,为无线通信领域提供先进的调制类型识别方案。
特征平台PAI-FeatureStore的功能列表
本内容介绍了阿里云PAI FeatureStore的功能与使用方法,涵盖离线和在线特征管理、实时特征视图、行为序列特征视图、FeatureStore SDK的多语言支持(如Go、Java、Python)、特征生产简化方案、FeatureDB存储特性(高性能、低成本、及时性)、训练样本导出以及自动化特征工程(如AutoFE)。同时提供了相关文档链接和技术细节,帮助用户高效构建和管理特征工程。适用于推荐系统、模型训练等场景。
54 2
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
内网桌面监控软件深度解析:基于 Python 实现的 K-Means 算法研究
内网桌面监控软件通过实时监测员工操作,保障企业信息安全并提升效率。本文深入探讨K-Means聚类算法在该软件中的应用,解析其原理与实现。K-Means通过迭代更新簇中心,将数据划分为K个簇类,适用于行为分析、异常检测、资源优化及安全威胁识别等场景。文中提供了Python代码示例,展示如何实现K-Means算法,并模拟内网监控数据进行聚类分析。
71 10
基于yolov2和googlenet网络的疲劳驾驶检测算法matlab仿真
本内容展示了基于深度学习的疲劳驾驶检测算法,包括算法运行效果预览(无水印)、Matlab 2022a 软件版本说明、部分核心程序(完整版含中文注释与操作视频)。理论部分详细阐述了疲劳检测原理,通过对比疲劳与正常状态下的特征差异,结合深度学习模型提取驾驶员面部特征变化。具体流程包括数据收集、预处理、模型训练与评估,使用数学公式描述损失函数和推理过程。课题基于 YOLOv2 和 GoogleNet,先用 YOLOv2 定位驾驶员面部区域,再由 GoogleNet 分析特征判断疲劳状态,提供高准确率与鲁棒性的检测方法。

热门文章

最新文章

相关产品

  • 云解析DNS
  • 推荐镜像

    更多
    下一篇
    oss创建bucket
    AI助理

    你好,我是AI助理

    可以解答问题、推荐解决方案等