DNS通道检测 国内学术界研究情况——研究方法:基于特征或者流量,使用机器学习决策树分类算法居多

简介:

http://xuewen.cnki.net/DownloadArticle.aspx?filename=BMKJ201104017&dbtype=CJFD
《浅析基于DNS协议的隐蔽通道及监测技术》
DNS隐蔽通道监测主要采用特征匹配和流量异常检测这两种技术。
3.1 特征匹配技术
特 征 匹 配 技 术 通 过 网 络 通 信 报 文 特 征 来 识别 D N S 隐 蔽 通 道 。 S n o r t 通 过 以 下 规 则 来 识 别NSTX和Iodine隐蔽通道:
alert udp $EXTERNAL_NET any - $HOME_NET 53 (msg:"Potential NSTX DNS Tunneling";
content:"|01 00|"; offset:2; within:4; content:"c T"; offset:12; depth:3; content:"|00 10 00 01|";
within:255; 特 征 匹 配 技 术 的 优 点 是 准 确 性 高 , 能 够 具体地识别出DNS隐蔽通道名称,缺点是不能识别出 未 知 或 变 种 的 隐 蔽 通 道 。 对 于 开 源 的 隐 蔽 通道 来 说 , 改 变 网 络 通 信 特 征 是 轻 而 易 举 的 事 ,
特征匹配技术显然应对不了层出不穷的变种。
3.2 流量异常检测技术
流 量 异 常 检 测 技 术 根 据 异 常 流 量 特 征 来 识别DNS隐蔽通道。DNS隐蔽通道运行时,DNS报文 流 量 有 着 明 显 的 异 常 : 域 名 超 长 、 域 名 中 主机名部分有许多随机字符、DNS报文数量剧增、DNS报文长度加大、出现TXT、NULL 、EDNS0等类型的DNS报文等。这些都是流量异常监测需要重点关注的要素。内网网管可以通过Snort工具来监测这些流量异常情况。思科IDS在监测到大量TXT类型的DNS报文时产生告警。目 前 , 流 量 异 常 检 测 技 术 能 够 较 好 地 识 别DNS隐蔽通道。即便是新型的Heyoka,不再引发单个主机的DNS报文数量剧增,但也难以消除其 他 的 流 量 异 常 特 征 , 难 于 规 避 流 量 异 常 监 测设备的检测。


http://d.g.wanfangdata.com.cn/Periodical_wlaqjsyyy201501024.aspx
《探析基于DNS协议隐蔽通道的基本架构及监测技术》

使用规则库,规则集主要描述不同协议的流量特征、数据报文的时问特征以及报头特征,并且还包括通讯两端的地址、流量等信息。 
在当前隐蔽通道监测技术中,最常用的是特征匹配与基于数据流异常分析的监测技术。基于特征匹配的方法,通过建立记录网络隐蔽信道特征的数据库,将网络中的数据流与其对比,匹配结果为真的话则表示存在隐蔽通道。但是该种方法很难检测出经过变种的隐蔽通道。基于数据流异常的方法,主要通过监测网络中数据流的异常情况来产生报警信息。

 

http://d.g.wanfangdata.com.cn/Thesis_Y2247883.aspx 
《DNS异常行为检测的研究》
使用C4.5决策树分类器实现对隐藏信道的检测。对于基于服务的DNS隐藏信道提出通道流量的统计算法;对于基于域名的DNS隐藏信道,提出了基于机器学习的检测算法,该算法选择多个报文连接特征为检测测度,使用C4.5决策树分类器实现对隐藏信道的检测。

http://d.g.wanfangdata.com.cn/Periodical_txxb201305019.aspx
《基于DNS的隐蔽通道流量检测》

也是使用决策树模型来进行检测。研究了 DNS 隐蔽通信流量特性,提取可区分合法查询与隐蔽通信的 12 个数据分组特征,利用机器学习的分类器对其会话统计特性进行判别。

 

http://cdmd.cnki.com.cn/Article/CDMD-10013-1011121845.htm
《DNS攻击检测与防御技术研究》
北邮2011年的一篇硕士论文,通过对流量检测的异常检测角度进行分析,改进了信息熵异常检测方法,同时研究利用粗糙集理论知识进行DNS攻击检测,给出检测模型和实验结果。为了弥补异常检测对小流量攻击检测方面不准确性,结合误用检测思想,给出一个双通道检测模型,为DNS服务提供一个较全面、低误报率的攻击检测平台。


http://www.cas.stc.sh.cn/jsjyup/pdf/2011/6/%E4%B8%80%E7%A7%8D%E5%9F%BA%E4%BA%8ENDIS%E9%A9%B1%E5%8A%A8%E7%A8%8B%E5%BA%8F%E5%AE%9E%E7%8E%B0%E9%9A%90%E8%94%BD%E9%80%9A%E9%81%93%E7%9A%84%E6%96%B9%E6%B3%95.pdf
《基于DNS 协议隐蔽通道的性能分析》
原理介绍居多,关键信息:根据前面对DNS 隐蔽通道原理的分析,可知DNS 隐蔽通道的上传通道可以使用BASE-32 和二进制2 种编码方式,下传通道可以使用BASE-64 和二进制2 种编码方式。BASE-32 和BASE64 编码方式的通用性强,可以应用于所有标准DNS 系统,但通信效率较低。二进制方式的通信效率较高,但是其通用性较差,部分DNS 系统不支持二进制数据。DNS 隐蔽通道的上行通道每个请求数据包可携带的编码后有效数据长度大约240 Byte,下行通道每个应答数据包可携带的编码后有效数据长度大约250 Byte。相应上行通道的BASE-32 编码前有效数据长度约150 Byte,下行通道的BASE-64 编码前有效数据长度约158 Byte。

 















本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/7090438.html,如需转载请自行联系原作者


相关文章
|
4月前
|
机器学习/深度学习 算法 Python
机器学习特征筛选:向后淘汰法原理与Python实现
向后淘汰法(Backward Elimination)是机器学习中一种重要的特征选择技术,通过系统性地移除对模型贡献较小的特征,以提高模型性能和可解释性。该方法从完整特征集出发,逐步剔除不重要的特征,最终保留最具影响力的变量子集。其优势包括提升模型简洁性和性能,减少过拟合,降低计算复杂度。然而,该方法在高维特征空间中计算成本较高,且可能陷入局部最优解。适用于线性回归、逻辑回归等统计学习模型。
170 7
|
6月前
|
机器学习/深度学习 存储 设计模式
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
本文探讨了数据基础设施设计中常见的一个问题:数据仓库或数据湖仓中的表格缺乏构建高性能机器学习模型所需的历史记录,导致模型性能受限。为解决这一问题,文章介绍了缓慢变化维度(SCD)技术,特别是Type II类型的应用。通过SCD,可以有效追踪维度表的历史变更,确保模型训练数据包含完整的时序信息,从而提升预测准确性。文章还从数据工程师、数据科学家和产品经理的不同视角提供了实施建议,强调历史数据追踪对提升模型性能和业务洞察的重要性,并建议采用渐进式策略逐步引入SCD设计模式。
267 8
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
|
22天前
|
存储 分布式计算 API
基于PAI-FeatureStore的LLM embedding功能,结合通义千问大模型,可通过以下链路实现对物品标题、内容字段的离线和在线特征管理。
本文介绍了基于PAI-FeatureStore和通义千问大模型的LLM embedding功能,实现物品标题、内容字段的离线与在线特征管理。核心内容包括:1) 离线特征生产(MaxCompute批处理),通过API生成Embedding并存储;2) 在线特征同步,实时接入数据并更新Embedding至在线存储;3) Python SDK代码示例解析;4) 关键步骤说明,如客户端初始化、参数配置等;5) 最佳实践,涵盖性能优化、数据一致性及异常处理;6) 应用场景示例,如推荐系统和搜索排序。该方案支持端到端文本特征管理,满足多种语义理解需求。
38 1
|
2月前
|
机器学习/深度学习 存储 监控
上网管理监控软件的 Go 语言流量特征识别算法实现与优化
本文探讨基于Go语言的流量特征识别算法,用于上网管理监控软件。核心内容涵盖AC自动机算法原理、实现及优化,通过路径压缩、哈希表存储和节点合并策略提升性能。实验表明,优化后算法内存占用降低30%,匹配速度提升20%。在1000Mbps流量下,CPU利用率低于10%,内存占用约50MB,检测准确率达99.8%。未来可进一步优化高速网络处理能力和融合机器学习技术。
90 10
|
1月前
|
机器学习/深度学习 算法 搜索推荐
决策树算法如何读懂你的购物心理?一文看懂背后的科学
"你为什么总能收到刚好符合需求的商品推荐?你有没有好奇过,为什么刚浏览过的商品就出现了折扣通知?
47 0
|
4月前
|
存储 机器学习/深度学习 缓存
特征平台PAI-FeatureStore的功能列表
本内容介绍了阿里云PAI FeatureStore的功能与使用方法,涵盖离线和在线特征管理、实时特征视图、行为序列特征视图、FeatureStore SDK的多语言支持(如Go、Java、Python)、特征生产简化方案、FeatureDB存储特性(高性能、低成本、及时性)、训练样本导出以及自动化特征工程(如AutoFE)。同时提供了相关文档链接和技术细节,帮助用户高效构建和管理特征工程。适用于推荐系统、模型训练等场景。
101 2
|
4月前
PAI-Rec推荐平台对于实时特征有三个层次
PAI-Rec推荐平台针对实时特征有三个处理层次:1) 离线模拟反推历史请求时刻的实时特征;2) FeatureStore记录增量更新的实时特征,模型特征导出样本准确性达99%;3) 通过callback回调接口记录请求时刻的特征。各层次确保了实时特征的准确性和时效性。
99 0
|
6月前
|
存储 分布式计算 MaxCompute
使用PAI-FeatureStore管理风控应用中的特征
PAI-FeatureStore 是阿里云提供的特征管理平台,适用于风控应用中的离线和实时特征管理。通过MaxCompute定义和设计特征表,利用PAI-FeatureStore SDK进行数据摄取与预处理,并通过定时任务批量计算离线特征,同步至在线存储系统如FeatureDB或Hologres。对于实时特征,借助Flink等流处理引擎即时分析并写入在线存储,确保特征时效性。模型推理方面,支持EasyRec Processor和PAI-EAS推理服务,实现高效且灵活的风险控制特征管理,促进系统迭代优化。
127 6
|
8月前
|
机器学习/深度学习
自动化机器学习研究MLR-Copilot:利用大型语言模型进行研究加速
【10月更文挑战第21天】在科技快速发展的背景下,机器学习研究面临诸多挑战。为提高研究效率,研究人员提出了MLR-Copilot系统框架,利用大型语言模型(LLM)自动生成和实施研究想法。该框架分为研究想法生成、实验实施和实施执行三个阶段,通过自动化流程显著提升研究生产力。实验结果显示,MLR-Copilot能够生成高质量的假设和实验计划,并显著提高任务性能。然而,该系统仍需大量计算资源和人类监督。
113 4
|
9月前
|
机器学习/深度学习 算法 Python
探索机器学习中的决策树算法:从理论到实践
【10月更文挑战第5天】本文旨在通过浅显易懂的语言,带领读者了解并实现一个基础的决策树模型。我们将从决策树的基本概念出发,逐步深入其构建过程,包括特征选择、树的生成与剪枝等关键技术点,并以一个简单的例子演示如何用Python代码实现一个决策树分类器。文章不仅注重理论阐述,更侧重于实际操作,以期帮助初学者快速入门并在真实数据上应用这一算法。

相关产品

  • 云解析DNS
  • 推荐镜像

    更多
  • DNS