这篇文章我们看下从计划缓存里列出执行状态。
1 /***************************************************************************************** 2 List heavy query based on CPU/IO. Change the order by clause appropriately 3 ******************************************************************************************/ 4 SELECT TOP 20 5 DB_NAME(qt.dbid) AS DatabaseName 6 ,DATEDIFF(MI,creation_time,GETDATE()) AS [Age of the Plan(Minutes)] 7 ,last_execution_time AS [Last Execution Time] 8 ,qs.execution_count AS [Total Execution Count] 9 ,CAST((qs.total_elapsed_time) / 1000000.0 AS DECIMAL(28,2)) [Total Elapsed Time(s)] 10 ,CAST((qs.total_elapsed_time ) / 1000000.0/ qs.execution_count AS DECIMAL(28, 2)) AS [Average Execution time(s)] 11 ,CAST((qs.total_worker_time) / 1000000.0 AS DECIMAL(28,2)) AS [Total CPU time (s)] 12 ,CAST(qs.total_worker_time * 100.0 / qs.total_elapsed_time AS DECIMAL(28,2)) AS [% CPU] 13 ,CAST((qs.total_elapsed_time - qs.total_worker_time)* 100.0 /qs.total_elapsed_time AS DECIMAL(28, 2)) AS [% Waiting] 14 ,CAST((qs.total_worker_time) / 1000000.0/ qs.execution_count AS DECIMAL(28, 2)) AS [CPU time average (s)] 15 ,CAST((qs.total_physical_reads) / qs.execution_count AS DECIMAL(28, 2)) AS [Avg Physical Read] 16 ,CAST((qs.total_logical_reads) / qs.execution_count AS DECIMAL(28, 2)) AS [Avg Logical Reads] 17 ,CAST((qs.total_logical_writes) / qs.execution_count AS DECIMAL(28, 2)) AS [Avg Logical Writes] 18 ,max_physical_reads 19 ,max_logical_reads 20 ,max_logical_writes 21 , SUBSTRING (qt.TEXT,(qs.statement_start_offset/2) + 1,((CASE WHEN qs.statement_end_offset = -1 22 THEN LEN(CONVERT(NVARCHAR(MAX), qt.TEXT)) * 2 23 ELSE qs.statement_end_offset 24 END - qs.statement_start_offset)/2) + 1) AS [Individual Query] 25 , qt.TEXT AS [Batch Statement] 26 , qp.query_plan 27 FROM SYS.DM_EXEC_QUERY_STATS qs 28 CROSS APPLY SYS.DM_EXEC_SQL_TEXT(qs.sql_handle) AS qt 29 CROSS APPLY SYS.DM_EXEC_QUERY_PLAN(qs.plan_handle) qp 30 WHERE qs.total_elapsed_time > 0 31 ORDER BY 32 [Total CPU time (s)] 33 --[Avg Physical Read] 34 --[Avg Logical Reads] 35 --[Avg Logical Writes] 36 --[Total Elapsed Time(s)] 37 --[Total Execution Count] 38 DESC
输出结果的每列说明介绍如下:
- DatabaseName 执行计划的数据库环境(数据库名)。
- Age of the Plan(Minutes) 计划缓存里计划的生存期,单位为分钟。
- Last Execution Time 这个计划的上次执行日期和时间。
- Total Execution Count 自上次编译后,总执行次数;在执行计划生存期内[Age of the Plan(Minutes)],总执行次数(自上次编译后)。
- Total Elapsed Time(s) 执行这个计划总执行次数后[Total Execution Count]的总占用时间,单位为秒。
- Average Execution time(s) 这个计划每次执行的平均时间,单位为秒。
- Total CPU time (s) 执行这个计划总执行次数后[Total Execution Count]的总CPU时间,单位为秒。
- % CPU 与Total Elapsed Time(s)相比,CPU占用时间比。
- % Waiting 与Total Elapsed Time(s)相比,等待资源占用时间比。
- CPU time average (s) 每次执行的平均CPU时间,单位为秒。
- Avg Physical Read 每次执行的平均物理读数。
- Avg Logical Reads 每次执行的平均逻辑读数。
- Avg Logical Writes 每次执行的平均逻辑写数。
- max_physical_reads 每次执行的时候,出新最大物理读数。
- max_logical_reads 每次执行的时候,出新最大逻辑读数。
- max_logical_writes 每次执行的时候,出新最大逻辑写数。
- Individual Query 批处理语句的部分信息。
- Batch Statement 批处理查询。
- query_plan XML格式的执行计划,点击后我们可以看图示执行计划。
一般我们可以分析前5条记录(通过修改排序规则)的具体语句信息。大多数情况,我们会发现问题出现在临时表的滥用,distinct语句,游标,不合适的表连接条件,不合适的索引等等。其他经常发生的问题是,存储过程对数据库的大量调用(CPU消耗和执行时间都很小)。这个需要和开发人员反馈,修改下具体的实现方式。如果数据经常被调用,可以在程序里使用缓存方法避免与服务器的多次交互。有些对数据库的调用只是检查结果数据是否有改变。有些对数据库的调用是为检查数据库表里是否有新记录,且必须马上处理的。为了完成这些操作,程序会在1秒内多次查询表来找出未处理的记录。这个可以通过程序的异步调用来往表里插入数据来解决,或可以使用.net框架里的sqlDependency来解决。(sqlDependency提供了这样一种能力:当被监测的数据库中的数据发生变化时,SqlDependency会自动触发OnChange事件来通知应用程序,从而达到让系统自动更新数据(或缓存)的目的。)
本文转自Woodytu博客园博客,原文链接:http://www.cnblogs.com/woodytu/p/4543913.html,如需转载请自行联系原作者