Hadoop Hive概念学习系列之hive的索引及案例(八)

简介:

hive里的索引是什么?

  索引是标准的数据库技术,hive 0.7版本之后支持索引。Hive提供有限的索引功能,这不像传统的关系型数据库那样有“键(key)”的概念,用户可以在某些列上创建索引来加速某些操作,给一个表创建的索引数据被保存在另外的表中。 Hive的索引功能现在还相对较晚,提供的选项还较少。但是,索引被设计为可使用内置的可插拔的java代码来定制,用户可以扩展这个功能来满足自己的需求。 当然不是说有的查询都会受惠于Hive索引。用户可以使用EXPLAIN语法来分析HiveQL语句是否可以使用索引来提升用户查询的性能。像RDBMS中的索引一样,需要评估索引创建的是否合理,毕竟,索引需要更多的磁盘空间,并且创建维护索引也会有一定的代价。 用户必须要权衡从索引得到的好处和代价。

 

 

 

 

 Hive的索引目的是什么?

  Hive的索引目的是提高Hive表指定列的查询速度
没有索引时,类似'WHERE tab1.col1 = 10' 的查询,Hive会加载整张表或分区,然后处理所有的rows。但是如果在字段col1上面存在索引时,那么只会加载和处理文件的一部分。与其他传统数据库一样,增加索引在提升查询速度时,会消耗额外资源去创建索引和需要更多的磁盘空间存储索引。
Hive 0.7.0版本中,加入了索引。Hive 0.8.0版本中增加了bitmap索引。

 

  

 

如何在hive里创建索引?

  说明:索引测试表是user,索引是user_index。

步骤一:先创建索引测试表

复制代码
create table user(
id int, 
name string
) 
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS TEXTFILE;
复制代码

 

 

 

步骤二:往索引测试表里导入数据

LOAD DATA LOCAL INPATH '/export1/tmp/wyp/row.txt' OVERWRITE INTO TABLE user;

 

 

 

步骤三:给索引测试表,创建索引之前测试

SELECT * FROM user where id =500000;


默认会去,加载整张表或分区,然后处理所有的rows。

Total MapReduce jobs = 1
Launching Job 1 out of 1

.......

Ended Job = job_1384246387966_0247
MapReduce Jobs Launched:
Job 0: Map: 2 Cumulative CPU: 5.63 sec 
HDFS Read: 361084006 HDFS Write: 357 SUCCESS
Total MapReduce CPU Time Spent: 5 seconds 630 msec
OK
500000 wyp.
Time taken: 14.107 seconds, Fetched: 1 row(s)

可以看出,一共用了14.107s。

 

 

 

步骤四:对索引测试表,创建索引,即这里是在表的属性id上,创建索引

hive > CREATE INDEX user_index ON TABLE user(id)     //索引一定是建立在某个属性或某些属性上的
     > AS 'org.apache.hadoop.hive.ql.index.compact.CompactIndexHandler' 
     > WITH deferred REBUILD
     > IN TABLE user_index_table;

 或者

CREATE INDEX user_index ON TABLE user(id) AS 'org.apache.hadoop.hive.ql.index.compact.CompactIndexHandler' WITH deferred REBUILD IN TABLE user_index_table;

  这样就对索引测试表user创建好了一个索引。索引名字为user_index。创建索引后的表命名为, user_index_table。

 

 

 

 

 

步骤五: 填充索引测试表的索引数据

ALTER INDEX user_index on user REBUILD;

 

 

 

步骤六:查看下创建索引后的表的内容

hive> SELECT * FROM user_index_table LIMIT 5; 

0 hdfs://mycluster/user/hive/warehouse/table02/000000_0 [0]
1 hdfs://mycluster/user/hive/warehouse/table02/000000_0 [352]
2 hdfs://mycluster/user/hive/warehouse/table02/000000_0 [704]
3 hdfs://mycluster/user/hive/warehouse/table02/000000_0 [1056]
4 hdfs://mycluster/user/hive/warehouse/table02/000000_0 [1408]
Time taken: 0.244 seconds, Fetched: 5 row(s)

 

 

 

步骤七:对创建索引后的user再进行测试

hive> select * from user where id =500000;

在表user的字段id上面存在索引时,那么只会加载和处理文件的一部分。

Total MapReduce jobs = 1
Launching Job 1 out of 1

...

MapReduce Total cumulative CPU time: 5 seconds 630 msec
Ended Job = job_1384246387966_0247
MapReduce Jobs Launched:
Job 0: Map: 2 Cumulative CPU: 5.63 sec 
HDFS Read: 361084006 HDFS Write: 357 SUCCESS
Total MapReduce CPU Time Spent: 5 seconds 630 msec
OK
500000 wyp.
Time taken: 13.042 seconds, Fetched: 1 row(s)

  可以看出,明显加快了些。

 

 

 

 

 

 

扩展

  若在Hive创建索引还存在bug:如果表格的模式信息来自SerDe,Hive将不能创建索引:

复制代码
hive> CREATE INDEX employees_index
> ON TABLE employees (country)
> AS 'org.apache.hadoop.hive.ql.index.compact.CompactIndexHandler'
> WITH DEFERRED REBUILD
> IDXPROPERTIES ('creator' = 'me','created_at' = 'some_time')
> IN TABLE employees_index_table
> COMMENT 'Employees indexed by country and name.';
复制代码

FAILED: Error in metadata: java.lang.RuntimeException: \
Check the index columns, they should appear in the table being indexed.
FAILED: Execution Error, return code 1 from \
org.apache.hadoop.hive.ql.exec.DDLTask


本文转自大数据躺过的坑博客园博客,原文链接:http://www.cnblogs.com/zlslch/p/6104090.html,如需转载请自行联系原作者

相关文章
|
3月前
|
SQL 分布式计算 关系型数据库
Hadoop-13-Hive 启动Hive 修改启动参数命令行启动测试 几句简单的HQL了解Hive
Hadoop-13-Hive 启动Hive 修改启动参数命令行启动测试 几句简单的HQL了解Hive
86 2
|
3月前
|
分布式计算 Hadoop 大数据
大数据体系知识学习(一):PySpark和Hadoop环境的搭建与测试
这篇文章是关于大数据体系知识学习的,主要介绍了Apache Spark的基本概念、特点、组件,以及如何安装配置Java、PySpark和Hadoop环境。文章还提供了详细的安装步骤和测试代码,帮助读者搭建和测试大数据环境。
105 1
|
3月前
|
SQL 分布式计算 Hadoop
手把手的教你搭建hadoop、hive
手把手的教你搭建hadoop、hive
230 1
|
3月前
|
SQL 分布式计算 Hadoop
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(一)
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(一)
66 4
|
3月前
|
SQL 分布式计算 关系型数据库
Hadoop-21 Sqoop 数据迁移工具 简介与环境配置 云服务器 ETL工具 MySQL与Hive数据互相迁移 导入导出
Hadoop-21 Sqoop 数据迁移工具 简介与环境配置 云服务器 ETL工具 MySQL与Hive数据互相迁移 导入导出
125 3
|
3月前
|
SQL 分布式计算 Hadoop
Hadoop-12-Hive 基本介绍 下载安装配置 MariaDB安装 3台云服务Hadoop集群 架构图 对比SQL HQL
Hadoop-12-Hive 基本介绍 下载安装配置 MariaDB安装 3台云服务Hadoop集群 架构图 对比SQL HQL
110 3
|
3月前
|
SQL 分布式计算 Hadoop
Hadoop-19 Flume Agent批量采集数据到HDFS集群 监听Hive的日志 操作则把记录写入到HDFS 方便后续分析
Hadoop-19 Flume Agent批量采集数据到HDFS集群 监听Hive的日志 操作则把记录写入到HDFS 方便后续分析
67 2
|
3月前
|
SQL
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(二)
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(二)
56 2
|
3月前
|
分布式计算 Hadoop Unix
Hadoop-28 ZooKeeper集群 ZNode简介概念和测试 数据结构与监听机制 持久性节点 持久顺序节点 事务ID Watcher机制
Hadoop-28 ZooKeeper集群 ZNode简介概念和测试 数据结构与监听机制 持久性节点 持久顺序节点 事务ID Watcher机制
60 1
|
3月前
|
存储 SQL 消息中间件
Hadoop-26 ZooKeeper集群 3台云服务器 基础概念简介与环境的配置使用 架构组成 分布式协调框架 Leader Follower Observer
Hadoop-26 ZooKeeper集群 3台云服务器 基础概念简介与环境的配置使用 架构组成 分布式协调框架 Leader Follower Observer
64 0