(MySQL里的数据)通过Sqoop Import HDFS 里 和 通过Sqoop Export HDFS 里的数据到(MySQL)(五)

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介:

 下面我们结合 HDFS,介绍 Sqoop 从关系型数据库的导入和导出


一、MySQL里的数据通过Sqoop import HDFS
它的功能是将数据从关系型数据库导入 HDFS 中,其流程图如下所示。

  我们来分析一下 Sqoop 数据导入流程,首先用户输入一个 Sqoop import 命令,Sqoop 会从关系型数据库中获取元数据信息,
比如要操作数据库表的 schema是什么样子,这个表有哪些字段,这些字段都是什么数据类型等。
它获取这些信息之后,会将输入命令转化为基于 Map 的 MapReduce作业
这样 MapReduce作业中有很多 Map 任务,每个 Map 任务从数据库中读取一片数据,这样多个 Map 任务实现并发的拷贝,把整个数据快速的拷贝到 HDFS 上。

 

 

 

 

 

Sqoop Import HDFS(带着官网)

  具体,自己去尝试做吧!

 

 

 

 

   在这之前,先启动hadoop集群,sbin/start-all.sh。这里不多赘述。

  同时,开启MySQL数据库。这里,不多赘述。

 

 

  同时,因为后续的sqoop运行啊,会产生一些日志等,我这里先新建一个目录,用来专门存放它。在哪个目录下运行后续的sqoop操作,就在哪个目录下新建就好。(因为,已经配置了环境变量,在任何路径下都是可以运行的)

复制代码
[hadoop@djt002 sqoop]$ pwd
/usr/local/sqoop
[hadoop@djt002 sqoop]$ ll
total 4
drwxr-xr-x. 9 hadoop hadoop 4096 Apr 27  2015 sqoop-1.4.6
[hadoop@djt002 sqoop]$ mkdir sqoopRunCreate
[hadoop@djt002 sqoop]$ ll
total 8
drwxr-xr-x. 9 hadoop hadoop 4096 Apr 27  2015 sqoop-1.4.6
drwxrwxr-x. 2 hadoop hadoop 4096 Mar 17 23:33 sqoopRunCreate
[hadoop@djt002 sqoop]$ cd sqoopRunCreate/
[hadoop@djt002 sqoopRunCreate]$ pwd
/usr/local/sqoop/sqoopRunCreate
[hadoop@djt002 sqoopRunCreate]$
复制代码

 

   比如,以后我就在这个目录下运行操作sqoop,/usr/local/sqoop/sqoopRunCreate。

 

 

 

 

 

 Sqoop Import 应用场景——密码访问

   (1)明码访问

[hadoop@djt002 sqoopRunCreate]$ sqoop list-databases \
> --connect jdbc:mysql://192.168.80.200/ \
> --username hive \
> --password hive

 

 

 

   (2)交互式密码访问

 

复制代码
[hadoop@djt002 sqoopRunCreate]$ sqoop list-databases \
> --connect jdbc:mysql://192.168.80.200/ \
> --username hive \
> -P

Enter password: (输入hive)
复制代码

 

 

 

  (3)文件授权密码访问

  因为,官网上是这么给的,在家目录,且需赋予400权限。所以

复制代码
[hadoop@djt002 ~]$ pwd
/home/hadoop
[hadoop@djt002 ~]$ echo -n "hive" > .password
[hadoop@djt002 ~]$ ls -a
.            .bash_history  .cache   djt        flume    .gnote           .gvfs            .local          .nautilus  .pulse         Videos       .xsession-errors
..           .bash_logout   .config  Documents  .gconf   .gnupg           .hivehistory     .mozilla        .password  .pulse-cookie  .vim         .xsession-errors.old
.abrt        .bash_profile  .dbus    Downloads  .gconfd  .gstreamer-0.10  .ICEauthority    Music           Pictures   .ssh           .viminfo
anagram.jar  .bashrc        Desktop  .esd_auth  .gnome2  .gtk-bookmarks   .imsettings.log  .mysql_history  Public     Templates      .Xauthority
[hadoop@djt002 ~]$ more .password 
hive
[hadoop@djt002 ~]$ 
复制代码

 

[hadoop@djt002 ~]$ chmod 400 .password 

复制代码
[hadoop@djt002 sqoopRunCreate]$ sqoop list-databases \
> --connect jdbc:mysql://192.168.80.200/ \
> --username hive \
> --password-file /home/hadoop/.password


java.io.IOException: The provided password file /home/hadoop/.password does not exist!
复制代码

 

[hadoop@djt002 local]$ $HADOOP_HOME/bin/hadoop dfs -put /home/hadoop/.password /user/hadoop



[hadoop@djt002 local]$ $HADOOP_HOME/bin/hadoop dfs -chmod 400 /user/hadoop/.password

 

   

 

[hadoop@djt002 ~]$ rm .password 
rm: remove write-protected regular file `.password'? y

 

 

 

 

[hadoop@djt002 sqoopRunCreate]$ sqoop list-databases \
> --connect jdbc:mysql://192.168.80.200/ \
> --username hive \
> --password-file /user/hadoop/.password

 

 

 

 

 

 

 Sqoop Import 应用场景——导入全表

  (1)不指定目录 (则默认是在/user/hadoop/下)

 

 

 

  我这里啊,给大家尝试另一个软件。(为什么,要这样带大家使用,是为了你们的多适应和多自学能力)(别嫌麻烦!)

SQLyog之MySQL客户端的下载、安装和使用

 

   这里,我们选择在hive这个数据库里,创建新的表,命名为

 

 

   如果,面对 SQLyog不能正常显示中文数据的情况:在SQLyog下输入SET character_set_results = gb2312(或 gbk),执行,重新启动SQLyog,显示应该也可以看到你所插入的中文数据了。

SQLyog软件里无法插入中文(即由默认的latin1改成UTF8编码格式)

 

  注意,我的数据表是djt-user。我这里改名啦!

 

[hadoop@djt002 sqoopRunCreate]$ sqoop import \
> --connect jdbc:mysql://192.168.80.200/hive \
> --username hive \
> --password-file /user/hadoop/.password \
> --table djt-user

 

 

 

 

 

 

 

 

 

 

 

SET character_set_database=utf8;
SET character_set_server=utf8;
SHOW VARIABLES LIKE 'character%'; 

 

[hadoop@djt002 ~]$ $HADOOP_HOME/bin/hadoop fs -rmr /user/hadoop/djt-user

 

 

[hadoop@djt002 sqoopRunCreate]$ sqoop import --connect jdbc:mysql://192.168.80.200/hive --username hive --password-file /user/hadoop/.password --table djt-user

[hadoop@djt002 sqoopRunCreate]$ sqoop import --connect jdbc:mysql://192.168.80.200/hive --username hive --password-file /user/hadoop/.password --table djt-user
Warning: /usr/local/sqoop/sqoop-1.4.6/../hcatalog does not exist! HCatalog jobs will fail.
Please set $HCAT_HOME to the root of your HCatalog installation.
Warning: /usr/local/sqoop/sqoop-1.4.6/../accumulo does not exist! Accumulo imports will fail.
Please set $ACCUMULO_HOME to the root of your Accumulo installation.
Warning: /usr/local/sqoop/sqoop-1.4.6/../zookeeper does not exist! Accumulo imports will fail.
Please set $ZOOKEEPER_HOME to the root of your Zookeeper installation.
17/03/18 04:17:10 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/usr/local/hadoop/hadoop-2.6.0/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/usr/local/hbase/hbase-1.2.3/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
17/03/18 04:17:14 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
17/03/18 04:17:14 INFO tool.CodeGenTool: Beginning code generation
17/03/18 04:17:15 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `djt-user` AS t LIMIT 1
17/03/18 04:17:15 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `djt-user` AS t LIMIT 1
17/03/18 04:17:15 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /usr/local/hadoop/hadoop-2.6.0
Note: /tmp/sqoop-hadoop/compile/38104c9fe28c7f43fdb42c26826dbf91/djt_user.java uses or overrides a deprecated API.
Note: Recompile with -Xlint:deprecation for details.
17/03/18 04:17:21 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-hadoop/compile/38104c9fe28c7f43fdb42c26826dbf91/djt-user.jar
17/03/18 04:17:21 WARN manager.MySQLManager: It looks like you are importing from mysql.
17/03/18 04:17:21 WARN manager.MySQLManager: This transfer can be faster! Use the --direct
17/03/18 04:17:21 WARN manager.MySQLManager: option to exercise a MySQL-specific fast path.
17/03/18 04:17:21 INFO manager.MySQLManager: Setting zero DATETIME behavior to convertToNull (mysql)
17/03/18 04:17:21 INFO mapreduce.ImportJobBase: Beginning import of djt-user
17/03/18 04:17:21 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
17/03/18 04:17:21 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
17/03/18 04:17:22 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032

17/03/18 04:17:30 INFO db.DBInputFormat: Using read commited transaction isolation
17/03/18 04:17:30 INFO db.DataDrivenDBInputFormat: BoundingValsQuery: SELECT MIN(`id`), MAX(`id`) FROM `djt-user`
17/03/18 04:17:31 INFO mapreduce.JobSubmitter: number of splits:3
17/03/18 04:17:32 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1489767532299_0002
17/03/18 04:17:33 INFO impl.YarnClientImpl: Submitted application application_1489767532299_0002
17/03/18 04:17:33 INFO mapreduce.Job: The url to track the job: http://djt002:8088/proxy/application_1489767532299_0002/
17/03/18 04:17:33 INFO mapreduce.Job: Running job: job_1489767532299_0002
17/03/18 04:18:03 INFO mapreduce.Job: Job job_1489767532299_0002 running in uber mode : false
17/03/18 04:18:03 INFO mapreduce.Job: map 0% reduce 0%

17/03/18 04:19:09 INFO mapreduce.Job: map 67% reduce 0%
17/03/18 04:19:12 INFO mapreduce.Job: map 100% reduce 0%
17/03/18 04:19:13 INFO mapreduce.Job: Job job_1489767532299_0002 completed successfully
17/03/18 04:19:13 INFO mapreduce.Job: Counters: 30
File System Counters
FILE: Number of bytes read=0
FILE: Number of bytes written=370638
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=295
HDFS: Number of bytes written=105
HDFS: Number of read operations=12
HDFS: Number of large read operations=0
HDFS: Number of write operations=6
Job Counters 
Launched map tasks=3
Other local map tasks=3
Total time spent by all maps in occupied slots (ms)=174022
Total time spent by all reduces in occupied slots (ms)=0
Total time spent by all map tasks (ms)=174022
Total vcore-seconds taken by all map tasks=174022
Total megabyte-seconds taken by all map tasks=178198528
Map-Reduce Framework
Map input records=3
Map output records=3
Input split bytes=295
Spilled Records=0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=5172
CPU time spent (ms)=9510

Physical memory (bytes) snapshot=362741760
Virtual memory (bytes) snapshot=2535641088
Total committed heap usage (bytes)=181862400
File Input Format Counters 
Bytes Read=0
File Output Format Counters 
Bytes Written=105
17/03/18 04:19:13 INFO mapreduce.ImportJobBase: Transferred 105 bytes in 111.9157 seconds (0.9382 bytes/sec)
17/03/18 04:19:13 INFO mapreduce.ImportJobBase: Retrieved 3 records.
[hadoop@djt002 sqoopRunCreate]$

 

 

 

 

 

 

 

 

 

 

 

[hadoop@djt002 ~]$ $HADOOP_HOME/bin/hadoop fs -cat /user/hadoop/djt-user/part-m-*
1,王菲,female,36,歌手
2,谢霆锋,male,30,歌手
3,周杰伦,male,33,导演
[hadoop@djt002 ~]$ 

 

 

 

   总结

复制代码
 
 
不指定目录  

sqoop import \
--connect 'jdbc:mysql://192.168.128.200/hive \
--username hive \
--password-file /user/hadoop/.password \ --table djt_user






不指定目录 (推荐这种) sqoop
import \ --connect 'jdbc:mysql://192.168.128.200/hive?useUnicode=true&characterEncoding=utf-8' \ --username hive \ --password-file /user/hadoop/.password \ --table djt_user
复制代码

     即,djt_user是在MySQL里,通过Sqoop工具,导入到HDFS里,这里是在/user/hadoop/djt_user

 

 

 

 

 

 

 

 

 

(2)指定目录

  任意可以指定的。

 

 

 

[hadoop@djt002 ~]$ $HADOOP_HOME/bin/hadoop fs -cat /sqoop/test/djt_user/part-m-*
1,王菲,female,36,歌手
2,谢霆锋,male,30,歌手
3,周杰伦,male,33,导演
[hadoop@djt002 ~]$ 

 

 

 

 

 

   这里,为统一标准和规范化,用数据表djt_user。

 

 

 

 

   (3)目录已存在

复制代码
[hadoop@djt002 sqoopRunCreate]$ sqoop import \
> --connect jdbc:mysql://192.168.80.200/hive \
> --username hive \
> --password-file /user/hadoop/.password \
> --table djt_user \
> --target-dir /sqoop/test/djt_user \
> --delete-target-dir
复制代码

 

 

 

Warning: /usr/local/sqoop/sqoop-1.4.6/../hcatalog does not exist! HCatalog jobs will fail.
Please set $HCAT_HOME to the root of your HCatalog installation.
Warning: /usr/local/sqoop/sqoop-1.4.6/../accumulo does not exist! Accumulo imports will fail.
Please set $ACCUMULO_HOME to the root of your Accumulo installation.
Warning: /usr/local/sqoop/sqoop-1.4.6/../zookeeper does not exist! Accumulo imports will fail.
Please set $ZOOKEEPER_HOME to the root of your Zookeeper installation.
17/03/18 04:43:40 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/usr/local/hadoop/hadoop-2.6.0/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/usr/local/hbase/hbase-1.2.3/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
17/03/18 04:43:45 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
17/03/18 04:43:45 INFO tool.CodeGenTool: Beginning code generation
17/03/18 04:43:46 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `djt_user` AS t LIMIT 1
17/03/18 04:43:46 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `djt_user` AS t LIMIT 1
17/03/18 04:43:46 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /usr/local/hadoop/hadoop-2.6.0
Note: /tmp/sqoop-hadoop/compile/1fae17dd362476d95608e216756efa34/djt_user.java uses or overrides a deprecated API.
Note: Recompile with -Xlint:deprecation for details.
17/03/18 04:43:52 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-hadoop/compile/1fae17dd362476d95608e216756efa34/djt_user.jar
17/03/18 04:43:52 INFO tool.ImportTool: Destination directory /sqoop/test/djt_user deleted.
17/03/18 04:43:52 WARN manager.MySQLManager: It looks like you are importing from mysql.
17/03/18 04:43:52 WARN manager.MySQLManager: This transfer can be faster! Use the --direct
17/03/18 04:43:52 WARN manager.MySQLManager: option to exercise a MySQL-specific fast path.

17/03/18 04:43:52 INFO manager.MySQLManager: Setting zero DATETIME behavior to convertToNull (mysql)
17/03/18 04:43:52 INFO mapreduce.ImportJobBase: Beginning import of djt_user
17/03/18 04:43:52 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
17/03/18 04:43:52 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
17/03/18 04:43:53 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
17/03/18 04:44:02 INFO db.DBInputFormat: Using read commited transaction isolation
17/03/18 04:44:02 INFO db.DataDrivenDBInputFormat: BoundingValsQuery: SELECT MIN(`id`), MAX(`id`) FROM `djt_user`
17/03/18 04:44:02 INFO mapreduce.JobSubmitter: number of splits:3
17/03/18 04:44:03 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1489767532299_0005
17/03/18 04:44:03 INFO impl.YarnClientImpl: Submitted application application_1489767532299_0005
17/03/18 04:44:03 INFO mapreduce.Job: The url to track the job: http://djt002:8088/proxy/application_1489767532299_0005/
17/03/18 04:44:03 INFO mapreduce.Job: Running job: job_1489767532299_0005
17/03/18 04:44:23 INFO mapreduce.Job: Job job_1489767532299_0005 running in uber mode : false
17/03/18 04:44:23 INFO mapreduce.Job: map 0% reduce 0%

17/03/18 04:45:21 INFO mapreduce.Job: map 67% reduce 0%
17/03/18 04:45:23 INFO mapreduce.Job: map 100% reduce 0%
17/03/18 04:45:23 INFO mapreduce.Job: Job job_1489767532299_0005 completed successfully
17/03/18 04:45:24 INFO mapreduce.Job: Counters: 30
File System Counters
FILE: Number of bytes read=0
FILE: Number of bytes written=370635
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=295
HDFS: Number of bytes written=80
HDFS: Number of read operations=12
HDFS: Number of large read operations=0
HDFS: Number of write operations=6
Job Counters 
Launched map tasks=3
Other local map tasks=3
Total time spent by all maps in occupied slots (ms)=163316
Total time spent by all reduces in occupied slots (ms)=0
Total time spent by all map tasks (ms)=163316
Total vcore-seconds taken by all map tasks=163316
Total megabyte-seconds taken by all map tasks=167235584
Map-Reduce Framework
Map input records=3
Map output records=3
Input split bytes=295
Spilled Records=0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=3240
CPU time spent (ms)=8480

Physical memory (bytes) snapshot=356696064
Virtual memory (bytes) snapshot=2535596032
Total committed heap usage (bytes)=181862400
File Input Format Counters 
Bytes Read=0
File Output Format Counters 
Bytes Written=80
17/03/18 04:45:24 INFO mapreduce.ImportJobBase: Transferred 80 bytes in 91.6189 seconds (0.8732 bytes/sec)
17/03/18 04:45:24 INFO mapreduce.ImportJobBase: Retrieved 3 records.
[hadoop@djt002 sqoopRunCreate]$

 

 

 

 

 

 

 

 Sqoop Import 应用场景——控制并行度

  (1)控制并行度

    默认是4个,当然我这里数据量小,指定1个就行了。

[hadoop@djt002 ~]$ $HADOOP_HOME/bin/hadoop fs -rm  /sqoop/test/djt_user/part-m-*

 

 

 

 

复制代码
[hadoop@djt002 sqoopRunCreate]$ sqoop import \
> --connect 'jdbc:mysql://192.168.80.200/hive?useUnicode=true&characterEncoding=utf-8' \
> --username hive \
> --password-file /user/hadoop/.password \
> --table djt_user \
> --target-dir /sqoop/test/djt_user \
> --delete-target-dir \
> -m 1
复制代码

 

 

 

 

 

  

   在这里,可能会遇到这个问题。

Sqoop异常解决ERROR tool.ImportTool: Encountered IOException running import job: java.io.IOException: No columns to generate for ClassWriter问题

 

[hadoop@djt002 ~]$ $HADOOP_HOME/bin/hadoop fs -cat /sqoop/test/djt_user/part-m-*

 

 

 

 

 

 

 

 

 

 

Sqoop Import 应用场景——控制字段分隔符

    (1)控制字段分隔符

   注意,默认的控制分段分隔符是逗号,我们这里自定义。

复制代码
[hadoop@djt002 sqoopRunCreate]$ sqoop import \
> --connect 'jdbc:mysql://192.168.80.200/hive?useUnicode=true&characterEncoding=utf-8' \
> --username hive \
> --password-file /user/hadoop/.password \
> --table djt_user \
> --target-dir /sqoop/test/djt_user \
> --delete-target-dir \
> -m 1 \
> --fields-terminated-by "@"
复制代码

 

  这里,djt_user是在MySQL里,通过Sqoop工具,导入到HDFS里,是在/sqoop/test/djt_user。

 

 

 

 

 

[hadoop@djt002 ~]$ $HADOOP_HOME/bin/hadoop fs -cat /sqoop/test/djt_user/part-m-*
1@王菲@female@36@歌手
2@谢霆锋@male@30@歌手
3@周杰伦@male@33@导演
[hadoop@djt002 ~]$ 

 

 

 

 

 

 

 

 

  (2)手动增量导入

 

            我们加入,4、5和6。

复制代码
[hadoop@djt002 sqoopRunCreate]$ sqoop import \
> --connect 'jdbc:mysql://192.168.80.200/hive?useUnicode=true&characterEncoding=utf-8' \
> --username hive \
> --password-file /user/hadoop/.password \
> --table djt_user \
> --target-dir /sqoop/test/djt_user \
> -m 1 \
> --fields-terminated-by "@" \
> --append \
> --check-column 'id' \
> --incremental append \
> --last-value 3
复制代码

 

  这里,djt_user是在MySQL里,通过Sqoop工具,导入到HDFS里,是在/sqoop/test/djt_user

 

 

复制代码
[hadoop@djt002 ~]$ $HADOOP_HOME/bin/hadoop fs -cat /sqoop/test/djt_user/part-m-*
1@王菲@female@36@歌手
2@谢霆锋@male@30@歌手
3@周杰伦@male@33@导演
4@王力宏@male@40@演员
5@张三@male@39@无业游民
6@李四@female@18@学生
[hadoop@djt002 ~]$ 
复制代码

 

 

 

 

 

 

      (3)自动增量导入

复制代码
[hadoop@djt002 sqoopRunCreate]$ sqoop job \
> --create job_import_djt_user \
> -- import \
> --connect 'jdbc:mysql://192.168.80.200/hive?useUnicode=true&characterEncoding=utf-8' \
> --username hive \
> --password-file /user/hadoop/.password \
> --table djt_user \
> --target-dir /sqoop/test/djt_user \
> -m 1 \
> --fields-terminated-by "@" \
> --append \
> --check-column 'id' \
> --incremental append \
> --last-value 6


[hadoop@djt002 sqoopRunCreate]$ sqoop job --exec job_import_djt_user
复制代码

   这里,djt_user是在MySQL里,通过Sqoop工具,导入到HDFS里,是在/sqoop/test/djt_user

 

 

 

  删除某个job

 [hadoop@djt002 sqoopRunCreate]$ sqoop job --delete job_import_djt_user

 

 

 

  查看当前可用的job

 [hadoop@djt002 sqoopRunCreate]$ sqoop job --list

 

 

 

 

   查看某个具体job的信息

 [hadoop@djt002 sqoopRunCreate]$  sqoop job --show job_import_djt_user

[hadoop@djt002 sqoopRunCreate]$ sqoop job --show
Warning: /usr/local/sqoop/sqoop-1.4.6/../hcatalog does not exist! HCatalog jobs will fail.
Please set $HCAT_HOME to the root of your HCatalog installation.
Warning: /usr/local/sqoop/sqoop-1.4.6/../accumulo does not exist! Accumulo imports will fail.
Please set $ACCUMULO_HOME to the root of your Accumulo installation.
Warning: /usr/local/sqoop/sqoop-1.4.6/../zookeeper does not exist! Accumulo imports will fail.
Please set $ZOOKEEPER_HOME to the root of your Zookeeper installation.
17/03/18 06:50:58 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6
Missing argument for option: show
[hadoop@djt002 sqoopRunCreate]$ clear
[hadoop@djt002 sqoopRunCreate]$ sqoop job --show job_import_djt_user
Warning: /usr/local/sqoop/sqoop-1.4.6/../hcatalog does not exist! HCatalog jobs will fail.
Please set $HCAT_HOME to the root of your HCatalog installation.
Warning: /usr/local/sqoop/sqoop-1.4.6/../accumulo does not exist! Accumulo imports will fail.
Please set $ACCUMULO_HOME to the root of your Accumulo installation.
Warning: /usr/local/sqoop/sqoop-1.4.6/../zookeeper does not exist! Accumulo imports will fail.
Please set $ZOOKEEPER_HOME to the root of your Zookeeper installation.
17/03/18 06:51:47 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/usr/local/hadoop/hadoop-2.6.0/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/usr/local/hbase/hbase-1.2.3/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
Job: job_import_djt_user
Tool: import
Options:
----------------------------
verbose = false
incremental.last.value = 10
db.connect.string = jdbc:mysql://192.168.80.200/hive?useUnicode=true&characterEncoding=utf-8
codegen.output.delimiters.escape = 0
codegen.output.delimiters.enclose.required = false

codegen.input.delimiters.field = 0
hbase.create.table = false
hdfs.append.dir = true
db.table = djt_user
codegen.input.delimiters.escape = 0
import.fetch.size = null
accumulo.create.table = false
codegen.input.delimiters.enclose.required = false
db.username = hive
reset.onemapper = false
codegen.output.delimiters.record = 10
import.max.inline.lob.size = 16777216
hbase.bulk.load.enabled = false
hcatalog.create.table = false
db.clear.staging.table = false
incremental.col = id
codegen.input.delimiters.record = 0
db.password.file = /user/hadoop/.password
enable.compression = false
hive.overwrite.table = false
hive.import = false
codegen.input.delimiters.enclose = 0
accumulo.batch.size = 10240000
hive.drop.delims = false
codegen.output.delimiters.enclose = 0
hdfs.delete-target.dir = false

codegen.output.dir = .
codegen.auto.compile.dir = true
relaxed.isolation = false
mapreduce.num.mappers = 1
accumulo.max.latency = 5000
import.direct.split.size = 0
codegen.output.delimiters.field = 64
export.new.update = UpdateOnly
incremental.mode = AppendRows
hdfs.file.format = TextFile
codegen.compile.dir = /tmp/sqoop-hadoop/compile/d81bf23cb3eb8eb11e7064a16df0b92b
direct.import = false
hdfs.target.dir = /sqoop/test/djt_user
hive.fail.table.exists = false
db.batch = false
[hadoop@djt002 sqoopRunCreate]$

 

 

 

 

 Sqoop Import 应用场景——启动压缩

   启动压缩

   默认是gzip压缩,具体去看官网

复制代码
[hadoop@djt002 sqoopRunCreate]$ sqoop import \
> --connect 'jdbc:mysql://192.168.80.200/hive?useUnicode=true&characterEncoding=utf-8' \
> --username hive \
> --password-file /user/hadoop/.password \
> -table djt_user \
> --target-dir /sqoop/test/djt_user \
> --delete-target-dir \
> -m 1 \
> --fields-terminated-by "@" \
> -z
复制代码

   这里,djt_user是在MySQL里,通过Sqoop工具,导入到HDFS里,是在/sqoop/test/djt_user

 

 

 

 

 

[hadoop@djt002 ~]$ $HADOOP_HOME/bin/hadoop fs -cat /sqoop/test/djt_user/part-m-*

 

 

 

 

 

Sqoop Import 应用场景——导入空值处理

  (1)导入空值处理

 

 

   先,不加空值处理,看是怎样的。

复制代码
[hadoop@djt002 sqoopRunCreate]$ sqoop import \
> --connect 'jdbc:mysql://192.168.80.200/hive?useUnicode=true&characterEncoding=utf-8' \
> --username hive \
> --password-file /user/hadoop/.password \
> -table djt_user \
> --target-dir /sqoop/test/djt_user \
> --delete-target-dir \
> -m 1 \
> --fields-terminated-by "@"
> 
复制代码

   这里,djt_user是在MySQL里,通过Sqoop工具,导入到HDFS里,是在/sqoop/test/djt_user

 

 

 

[hadoop@djt002 ~]$ $HADOOP_HOME/bin/hadoop fs -cat /sqoop/test/djt_user/part-m-*

 

 

 

   所以,一般需要对null进行转换,即需对空值进行处理。比如年龄那列,要么给他假如是18岁定死,要么就是0等。

复制代码
[hadoop@djt002 sqoopRunCreate]$ sqoop import \
> --connect 'jdbc:mysql://192.168.80.200/hive?useUnicode=true&characterEncoding=utf-8' \
> --username hive \
> --password-file /user/hadoop/.password \
> -table djt_user \
> --target-dir /sqoop/test/djt_user \
> --delete-target-dir \
> -m 1 \
> --fields-terminated-by "@" \
> --null-non-string "###" \
> --null-string "###"
复制代码

  这里,djt_user是在MySQL里,通过Sqoop工具,导入到HDFS里,是在/sqoop/test/djt_user 

 

   我这里,将空值null转换成###,这个,大家可以根据自己的需要,可以转换成其它的,不多赘述。自行去举一反三。

[hadoop@djt002 ~]$ $HADOOP_HOME/bin/hadoop fs -cat /sqoop/test/djt_user/part-m-*

 

 

 

 

   下面呢,这个场景,比如,如下,我不需全部的字段导出,非空值的某部分字段呢,该如何操作啊?

Sqoop Import 应用场景——导入部分数据

  (1)使用–columns 

  即,指定某个或某些字段导入

 

 

   比如,我这里,指定只导入id和name,当然,你可以去指定更多,我这里只是个参考和带入门的引子实例罢了。

复制代码
[hadoop@djt002 sqoopRunCreate]$ sqoop import \
> --connect 'jdbc:mysql://192.168.80.200/hive?useUnicode=true&characterEncoding=utf-8' \
> --username hive \
> --password-file /user/hadoop/.password \
> -table djt_user \
> --columns id,name \
> --target-dir /sqoop/test/djt_user \
> --delete-target-dir \
> -m 1 \
> --fields-terminated-by "@" \
> --null-non-string "###" \
> --null-string "###"
复制代码

  这里,djt_user是在MySQL里,通过Sqoop工具,导入到HDFS里,是在/sqoop/test/djt_user 

 

 

 

 

复制代码
[hadoop@djt002 ~]$ $HADOOP_HOME/bin/hadoop fs -cat /sqoop/test/djt_user/part-m-*
1@王菲
2@谢霆锋
3@周杰伦
4@王力宏
5@张三
6@李四
7@王五
8@王六
9@小王
10@小林
[hadoop@djt002 ~]$ 
复制代码

 

 

  (2)使用–where

   刚是导入指定的字段,也可以用筛选来导入达到目的。

  比如,我这里,只想导入sex=female的。

 

复制代码
[hadoop@djt002 sqoopRunCreate]$ sqoop import \
> --connect 'jdbc:mysql://192.168.80.200/hive?useUnicode=true&characterEncoding=utf-8' \
> --username hive \
> --password-file /user/hadoop/.password \
> --table djt_user \
> --where "sex='female'" \
> --target-dir /sqoop/test/djt_user \
> --delete-target-dir \
> -m 1 \
> --fields-terminated-by "@" \
> --null-non-string "###" \
> --null-string "###"
复制代码

   这里,djt_user是在MySQL里,通过Sqoop工具,导入到HDFS里,是在/sqoop/test/djt_user

 

 

 

复制代码
[hadoop@djt002 ~]$ $HADOOP_HOME/bin/hadoop fs -cat /sqoop/test/djt_user/part-m-*
1@王菲@female@36@歌手
6@李四@female@18@学生
9@小王@female@24@hadoop运维
10@小林@female@30@###
[hadoop@djt002 ~]$ 
复制代码

 

 

 

   (3)使用–query

   比如,导入比较复杂更实用。

 

 

 

复制代码
[hadoop@djt002 ~]$ $HADOOP_HOME/bin/hadoop fs -cat /sqoop/test/djt_user/part-m-*
2@谢霆锋@male@30@歌手
6@李四@female@18@学生
9@小王@female@24@hadoop运维
10@小林@female@30@###
[hadoop@djt002 ~]$ 
复制代码

 

 

 

 

 

 

 

 

注意
若,从MySQL数据库导入数据到HDFS里,出现中断情况了怎么办?

  答:好比MapReduce作业丢失一样,有个容错机制。但是这里,我们不用担心,任务中断导致数据重复插入,这个不需担心。

  它这里呢,要么就是全部导入才成功,要么就是一条都导不进不成功。

      即,Sqoop Import HDFS 里没有“脏数据”的情况发生

 

 

 

 

 

 

 

MySQL里的数据通过Sqoop import HDFS(作为扩展)

  下面我们看一下 Sqoop 如何使用命令行来导入数据的,其命令行语法如下所示。

sqoop import \
--connect jdbc:mysql://192.168.80.128:3306/db_hadoop \
--username sqoop \
--password sqoop \
--table user \
--target-dir /junior/sqoop/ \ //可选,不指定目录,数据默认导入到/user下
--where "sex='female'" \ //可选
--as-sequencefile \ //可选,不指定格式,数据格式默认为 Text 文本格式
--num-mappers 10 \ //可选,这个数值不宜太大
--null-string '\\N' \ //可选 
--null-non-string '\\N' \ //可选

 

--connect:指定 JDBC URL。
--username/password:mysql 数据库的用户名。
--table:要读取的数据库表。
--target-dir:将数据导入到指定的 HDFS 目录下,文件名称如果不指定的话,会默认数据库的表名称。
--where:过滤从数据库中要导入的数据。
--as-sequencefile:指定数据导入数据格式。
--num-mappers:指定 Map 任务的并发度。
--null-string,--null-non-string:同时使用可以将数据库中的空字段转化为'\N',因为数据库中字段为 null,会占用很大的空间。

 

 

 

 

 

下面我们介绍几种 Sqoop 数据导入的特殊应用(作为扩展)

1、Sqoop 每次导入数据的时候,不需要把以往的所有数据重新导入 HDFS,只需要把新增的数据导入 HDFS 即可,下面我们来看看如何导入新增数据。

复制代码
sqoop import \
--connect jdbc:mysql://192.168.80.128:3306/db_hadoop \
--username sqoop \
--password sqoop \
--table user \
--incremental append \    //代表只导入增量数据
--check-column id \     //以主键id作为判断条件
--last-value 999    //导入id大于999的新增数据
复制代码

  上述三个组合使用,可以实现数据的增量导入。

 

 

 

2、Sqoop 数据导入过程中,直接输入明码存在安全隐患,我们可以通过下面两种方式规避这种风险。
1)-P:sqoop 命令行最后使用 -P,此时提示用户输入密码,而且用户输入的密码是看不见的,起到安全保护作用。密码输入正确后,才会执行 sqoop 命令。

sqoop import \
--connect jdbc:mysql://192.168.80.128:3306/db_hadoop \
--username sqoop \
--table user \
-P

 

 

 

  2)--password-file:指定一个密码保存文件,读取密码。我们可以将这个文件设置为只有自己可读的文件,防止密码泄露。

sqoop import \
--connect jdbc:mysql://192.168.80.128:3306/db_hadoop \
--username sqoop \
--table user \
--password-file my-sqoop-password

 

 

 

 

 

 

 

 

 

二、通过Sqoop Export HDFS里的数据到MySQL
它的功能是将数据从 HDFS 导入关系型数据库表中,其流程图如下所示。

  我们来分析一下 Sqoop 数据导出流程,首先用户输入一个 Sqoop export 命令,它会获取关系型数据库的 schema,
建立 Hadoop 字段与数据库表字段的映射关系。 然后会将输入命令转化为基于 Map 的 MapReduce作业,
这样 MapReduce作业中有很多 Map 任务,它们并行的从 HDFS 读取数据,并将整个数据拷贝到数据库中。

 

  大家,必须要去看官网!

 

 

 

 Sqoop Export 应用场景——直接导出

    直接导出

  请去看我下面的这篇博客,对你有好处。我不多赘述。

SQLyog普通版与SQLyog企业版对比分析

 

 

 

CREATE TABLE djt_user_copy SELECT * FROM djt_user WHERE 1=2;

 

 

 

 

 

 

 

复制代码
[hadoop@djt002 sqoopRunCreate]$ sqoop export \
> --connect 'jdbc:mysql://192.168.80.200/hive?useUnicode=true&characterEncoding=utf-8' \
> --username hive \
> --password-file /user/hadoop/.password \
> --table djt_user_copy \
> --export-dir /sqoop/test/djt_user \
> --input-fields-terminated-by "@"
复制代码

   这里,HDFS里,是在/sqoop/test/djt_user通过Sqoop工具,导出到djt_user_copy是在MySQL里

 

 

 

   因为啊,之前,/sqoop/test/djt_user的数据如下

 

 

 

 

 

 

 Sqoop Export 应用场景——指定map数

  指定map数

    Map Task默认是4个

 

 

复制代码
[hadoop@djt002 sqoopRunCreate]$ sqoop export \
> --connect 'jdbc:mysql://192.168.80.200/hive?useUnicode=true&characterEncoding=utf-8' \
> --username hive \
> --password-file /user/hadoop/.password \
> --table djt_user_copy \
> --export-dir /sqoop/test/djt_user \
> --input-fields-terminated-by "@" \
> -m 1
复制代码

   这里,HDFS里,是在/sqoop/test/djt_user,通过Sqoop工具,导出到djt_user_copy是在MySQL里。

 

 

 

 

 

 

   

Sqoop Export 应用场景——插入和更新

  插入和更新

 

 

 

 

复制代码
[hadoop@djt002 sqoopRunCreate]$ sqoop export \
> --connect 'jdbc:mysql://192.168.80.200/hive?useUnicode=true&characterEncoding=utf-8' \
> --username hive \
> --password-file /user/hadoop/.password \
> --table djt_user_copy \
> --export-dir /sqoop/test/djt_user \
> --input-fields-terminated-by "@" \
> -m 1 \
> --update-key id \
> --update-mode allowinsert
复制代码

   这里,HDFS里,是在/sqoop/test/djt_user通过Sqoop工具,导出到djt_user_copy是在MySQL里

 

 

 

 

 

 

 

 

Sqoop Export 应用场景——事务处理

  事务处理

   比如,从HDFS里导出到MySQL。这个时候可能会出现意外情况,如出现中断,则会出现“脏数据”重复情况。

则提供了这个事务处理。

 

      即 HDFS  ->   先导出到  中间表(成功才可以,后续导出) -> MySQL

我这里是,     /sqoop/test/djt_user (在HDFS里)    ->     djt_user_copy_tmp (在MySQL里)  ->    djt_user_copy (在MySQL里) 

   这里,HDFS里,是在/sqoop/test/djt_user,通过Sqoop工具,导出到djt_user_copy是在MySQL里。

 

 

  注意这个中间表,需要创建djt_user_copy_tmp

 

 

 

 

 

 

复制代码
[hadoop@djt002 sqoopRunCreate]$ sqoop export \
> --connect 'jdbc:mysql://192.168.80.200/hive?useUnicode=true&characterEncoding=utf-8' \
> --username hive \
> --password-file /user/hadoop/.password \
> --table djt_user_copy \
> --staging-table djt_user_copy_tmp \
> --clear-staging-table \
> --export-dir /sqoop/test/djt_user \
> -input-fields-terminated-by "@"
复制代码

   这里,HDFS里,是在/sqoop/test/djt_user通过Sqoop工具,先导出到中间表djt_user_copy_tmp是在MySQL里,再继续导出到djt_user_copy是在MySQL里。

 

 

 

  因为,此刻HDFS里的

 

 

 

 

  

  再次做测试,假设,我现在,把MySQL里的djt_user数据导入到HDFS里的/sqoop/test/djt_user。

[hadoop@djt002 sqoopRunCreate]$ sqoop import --connect 'jdbc:mysql://192.168.80.200/hive?useUnicode=true&characterEncoding=utf-8' --username hive --password-file /user/hadoop/.password -table djt_user  --target-dir /sqoop/test/djt_user --delete-target-dir -m 1 --fields-terminated-by "@" --null-non-string "###" --null-string "###"

 

 

复制代码
[hadoop@djt002 ~]$ $HADOOP_HOME/bin/hadoop fs -cat /sqoop/test/djt_user/part-m-*
1@王菲@female@36@歌手
2@谢霆锋@male@30@歌手
3@周杰伦@male@33@导演
4@王力宏@male@40@演员
5@张三@male@39@无业游民
6@李四@female@18@学生
7@王五@male@34@Java开发工程师
8@王六@male@45@hadoop工程师
9@小王@female@24@hadoop运维
10@小林@female@30@###
[hadoop@djt002 ~]$ 
复制代码

 

   然后,接着,我们把HDFS里的/sqoop/test/djt_user    导出到  MySQL里的 djt_user_copydjt_user_copy。

  说白了,就是再次做了一下 Sqoop Export 应用场景——事务处理。(自己好好理清思路去)

 即 HDFS  ->   先导出到  中间表(成功才可以,后续导出) -> MySQL

我这里是,      /sqoop/test/djt_user(在HDFS里)    ->     djt_user_copy_tmp (在MySQL里)  ->    djt_user_copydjt_user_copy (在MySQL里) 

 

 

 

 

复制代码
[hadoop@djt002 sqoopRunCreate]$ sqoop export \
> --connect 'jdbc:mysql://192.168.80.200/hive?useUnicode=true&characterEncoding=utf-8' \
> --username hive \
> --password-file /user/hadoop/.password \
> --table djt_user_copy \
> --staging-table djt_user_copy_tmp \
> --clear-staging-table \
> --export-dir /sqoop/test/djt_user \
> -input-fields-terminated-by "@"
复制代码

  这里,HDFS里,是在/sqoop/test/djt_user通过Sqoop工具,先导出到中间表djt_user_copy_tmp是在MySQL里,再继续导出到djt_user_copy是在MySQL里 

 

 

   因为,HDFS里的

 

 

 

 

   得到,

 

 

 

 

 

 

 

 

 

 

Sqoop Export  HDFS 应用场景——字段不对应问题

  字段不对应问题

   因为,在Sqoop import时,我们有选择性的导入某个字段或某些字段对吧,那么,同样,对于Sqoop export也是一样!

[hadoop@djt002 sqoopRunCreate]$ sqoop import --connect 'jdbc:mysql://192.168.80.200/hive?useUnicode=true&characterEncoding=utf-8' --username hive --password-file /user/hadoop/.password -table djt_user --columns name,sex,age,profile --target-dir /sqoop/test/djt_user --delete-target-dir -m 1 --fields-terminated-by "@" --null-non-string "###" --null-string "###"

  

 

 

  比如,HDFS里(的/sqoop/test/djt_user/)有4列,  数据库里(的djt_user_copy)有5列(因为会多出自增键)。那么,如何来处理这个棘手问题呢?

 

 

 

 

  这样来处理, 

  照样sqoop export里也有 -columns name,sex,age,profile \

 

 

 

   我的这里,自增键呢?/

 

 

 

 

 

 

 

 

 

 

 

通过Sqoop Export HDFS里的数据到MySQL(作为扩展)

    下面我们看一下 Sqoop 如何使用命令行来导出数据的,其命令行语法如下所示。

复制代码
sqoop export \
--connect jdbc:mysql://192.168.80.128:3306/db_hadoop \
--username sqoop \
--password sqoop \
--table user \
--export-dir user
复制代码

--connect:指定 JDBC URL。
--username/password:mysql 数据库的用户名和密码。
--table:要导入的数据库表。
--export-dir:数据在 HDFS 上的存放目录。

 

 

 

 

下面我们介绍几种 Sqoop 数据导出的特殊应用(作为扩展)

  1、Sqoop export 将数据导入数据库,一般情况下是一条一条导入的,这样导入的效率非常低。这时我们可以使用 Sqoop export 的批量导入提高效率,其具体语法如下。

复制代码
sqoop export \
--Dsqoop.export.records.per.statement=10 \
--connect jdbc:mysql://192.168.80.128:3306/db_hadoop \
--username sqoop \
--password sqoop \
--table user \
--export-dir user \
--batch
复制代码

      --Dsqoop.export.records.per.statement:指定每次导入10条数据,--batch:指定是批量导入。

 

  2、在实际应用中还存在这样一个问题,比如导入数据的时候,Map Task 执行失败, 
那么该 Map 任务会转移到另外一个节点执行重新运行,这时候之前导入的数据又要重新导入一份,造成数据重复导入。
因为 Map Task 没有回滚策略,一旦运行失败,已经导入数据库中的数据就无法恢复。
Sqoop export 提供了一种机制能保证原子性, 使用--staging-table 选项指定临时导入的表。


Sqoop export 导出数据的时候会分为两步:
第一步,将数据导入数据库中的临时表,如果导入期间 Map Task 失败,会删除临时表数据重新导入;
第二步,确认所有 Map Task 任务成功后,会将临时表名称为指定的表名称。

 

复制代码
sqoop export \
--connect jdbc:mysql://192.168.80.128:3306/db_hadoop \
--username sqoop \
--password sqoop \
--table user \
--staging-table staging_user
复制代码

 

 

 

 

 

  3、在 Sqoop 导出数据过程中,如果我们想更新已有数据,可以采取以下两种方式。

        1)通过 --update-key id 更新已有数据。

sqoop export \
--connect jdbc:mysql://192.168.80.128:3306/db_hadoop \
--username sqoop \
--password sqoop \
--table user \
--update-key id

 

   2)  使用 --update-key id和--update-mode allowinsert 两个选项的情况下,如果数据已经存在,则更新数据,如果数据不存在,则插入新数据记录。

复制代码
sqoop export \
--connect jdbc:mysql://192.168.80.128.:3306/db_hadoop \
--username sqoop \
--password sqoop \
--table user \
--update-key id \
--update-mode allowinsert
复制代码

 

 

4、如果 HDFS 中的数据量比较大,很多字段并不需要,我们可以使用 --columns 来指定插入某几列数据。

复制代码
sqoop export \
--connect jdbc:mysql://192.168.80.128:3306/db_hadoop \
--username sqoop \
--password sqoop \
--table user \
--column username,sex
复制代码

 

 

 

 

5、当导入的字段数据不存在或者为null的时候,我们使用--input-null-string和--input-null-non-string 来处理。

复制代码
sqoop export \
--connect jdbc:mysql://129.168.80.128:3306/db_hadoop \
--username sqoop \
--password sqoop \
--table user \
--input-null-string '\\N' \
--input-null-non-string '\\N'
复制代码

 

 


本文转自大数据躺过的坑博客园博客,原文链接:http://www.cnblogs.com/zlslch/p/6116476.html,如需转载请自行联系原作者

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
5月前
|
存储 数据采集 JavaScript
深入理解数仓开发(一)数据技术篇之日志采集
深入理解数仓开发(一)数据技术篇之日志采集
|
5月前
|
消息中间件 关系型数据库 Kafka
深入理解数仓开发(二)数据技术篇之数据同步
深入理解数仓开发(二)数据技术篇之数据同步
|
5月前
|
分布式计算 DataWorks 关系型数据库
实时数仓 Hologres产品使用合集之如何将MySQL数据初始化到分区表中
实时数仓Hologres的基本概念和特点:1.一站式实时数仓引擎:Hologres集成了数据仓库、在线分析处理(OLAP)和在线服务(Serving)能力于一体,适合实时数据分析和决策支持场景。2.兼容PostgreSQL协议:Hologres支持标准SQL(兼容PostgreSQL协议和语法),使得迁移和集成变得简单。3.海量数据处理能力:能够处理PB级数据的多维分析和即席查询,支持高并发低延迟查询。4.实时性:支持数据的实时写入、实时更新和实时分析,满足对数据新鲜度要求高的业务场景。5.与大数据生态集成:与MaxCompute、Flink、DataWorks等阿里云产品深度融合,提供离在线
|
5月前
|
分布式计算 关系型数据库 数据挖掘
实时数仓 Hologres产品使用合集之误删Hologres一张表的数据,可以支持闪回功能吗
实时数仓Hologres的基本概念和特点:1.一站式实时数仓引擎:Hologres集成了数据仓库、在线分析处理(OLAP)和在线服务(Serving)能力于一体,适合实时数据分析和决策支持场景。2.兼容PostgreSQL协议:Hologres支持标准SQL(兼容PostgreSQL协议和语法),使得迁移和集成变得简单。3.海量数据处理能力:能够处理PB级数据的多维分析和即席查询,支持高并发低延迟查询。4.实时性:支持数据的实时写入、实时更新和实时分析,满足对数据新鲜度要求高的业务场景。5.与大数据生态集成:与MaxCompute、Flink、DataWorks等阿里云产品深度融合,提供离在线
|
3月前
|
DataWorks 负载均衡 Serverless
实时数仓 Hologres产品使用合集之如何导入大量数据
实时数仓Hologres是阿里云推出的一款高性能、实时分析的数据库服务,专为大数据分析和复杂查询场景设计。使用Hologres,企业能够打破传统数据仓库的延迟瓶颈,实现数据到决策的无缝衔接,加速业务创新和响应速度。以下是Hologres产品的一些典型使用场景合集。
|
3月前
|
SQL 消息中间件 OLAP
OneSQL OLAP实践问题之实时数仓中数据的分层如何解决
OneSQL OLAP实践问题之实时数仓中数据的分层如何解决
52 1
|
3月前
|
SQL DataWorks 数据库连接
实时数仓 Hologres操作报错合集之如何将物理表数据写入临时表
实时数仓Hologres是阿里云推出的一款高性能、实时分析的数据库服务,专为大数据分析和复杂查询场景设计。使用Hologres,企业能够打破传统数据仓库的延迟瓶颈,实现数据到决策的无缝衔接,加速业务创新和响应速度。以下是Hologres产品的一些典型使用场景合集。
|
3月前
|
SQL 分布式计算 关系型数据库
实时数仓 Hologres操作报错合集之指定主键更新模式报错主键数据重复,该如何处理
实时数仓Hologres是阿里云推出的一款高性能、实时分析的数据库服务,专为大数据分析和复杂查询场景设计。使用Hologres,企业能够打破传统数据仓库的延迟瓶颈,实现数据到决策的无缝衔接,加速业务创新和响应速度。以下是Hologres产品的一些典型使用场景合集。
|
3月前
|
SQL 分布式计算 MaxCompute
实时数仓 Hologres产品使用合集之如何在插入数据后获取自增的id值
实时数仓Hologres是阿里云推出的一款高性能、实时分析的数据库服务,专为大数据分析和复杂查询场景设计。使用Hologres,企业能够打破传统数据仓库的延迟瓶颈,实现数据到决策的无缝衔接,加速业务创新和响应速度。以下是Hologres产品的一些典型使用场景合集。
实时数仓 Hologres产品使用合集之如何在插入数据后获取自增的id值
|
3月前
|
存储 搜索推荐 关系型数据库
实时数仓 Hologres产品使用合集之如何在新增列的时候将历史数据也补上默认值
实时数仓Hologres是阿里云推出的一款高性能、实时分析的数据库服务,专为大数据分析和复杂查询场景设计。使用Hologres,企业能够打破传统数据仓库的延迟瓶颈,实现数据到决策的无缝衔接,加速业务创新和响应速度。以下是Hologres产品的一些典型使用场景合集。

热门文章

最新文章

推荐镜像

更多
下一篇
无影云桌面