OneSQL OLAP实践问题之实时数仓中数据的分层如何解决

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: OneSQL OLAP实践问题之实时数仓中数据的分层如何解决

问题一:OneSQL OLAP分析平台在Hive SQL兼容性方面进行了哪些改进?


OneSQL OLAP分析平台在Hive SQL兼容性方面进行了哪些改进?


参考回答:

OneSQL OLAP分析平台针对Flink对Hive SQL语法的兼容性进行了改进,目前兼容性大致为80%,旨在提升用户对Hive SQL的熟悉度和迁移的便利性。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/666303



问题二:OneSQL OLAP分析平台取得了哪些显著的成果?


OneSQL OLAP分析平台取得了哪些显著的成果?


参考回答:

"OneSQL OLAP分析平台取得了以下显著成果:

统一查询入口,用户执行出错率下降85.7%,SQL执行成功率提升3%。

SQL执行时间缩短10%,各集群资源利用率提升,减少任务排队等待时间。

Flink作为OLAP分析引擎的一部分,实时计算集群的资源利用率提升了15%。"


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/666304



问题三:在实时数仓建设过程中,遇到了哪些主要问题?


在实时数仓建设过程中,遇到了哪些主要问题?


参考回答:

"在实时数仓建设过程中,遇到了以下主要问题:

将离线任务转为实时计算任务后,由于计算逻辑复杂(如多流JOIN、去重),导致作业状态过大,出现OOM异常或作业算子背压太大。

维表Join过程中,明细流表与大维表Join时,维表数据过多,加载到内存后导致OOM,作业失败无法运行。

Flink将流维表Join产生的多维明细数据写入ClickHouse时,无法保证Exactly-once,作业Failover时可能导致数据重复写入。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/666305



问题四:BIGO大数据平台是如何通过Bigoflow来管理实时任务的?


BIGO大数据平台是如何通过Bigoflow来管理实时任务的?


参考回答:

"BIGO大数据平台通过Bigoflow来管理实时任务,主要包括:

统一的实时任务接入入口,简化任务部署流程。

管理实时任务的元数据,如任务配置、依赖关系等。

构建实时任务的血缘关系,帮助追踪数据流向和计算过程。"


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/666306


问题五:在实时数仓中,数据是如何进行分层的?


在实时数仓中,数据是如何进行分层的?


参考回答:

"在实时数仓中,数据主要按照以下四层进行分层:

ODS层:原始数据,存放于Kafka/Pulsar等消息队列中。

DWD层:用户行为明细数据,经过Flink任务聚合后保存到Kafka/Pulsar中。

DWS层:多维明细数据,通过流维表JOIN产生,并输出到ClickHouse表中。

ADS层:汇总数据,根据业务需求从不同维度对ClickHouse中的多维明细数据进行汇总。

"


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/666307

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
相关文章
|
3月前
|
存储 监控 数据挖掘
京东物流基于Flink & StarRocks的湖仓建设实践
本文整理自京东物流高级数据开发工程师梁宝彬在Flink Forward Asia 2024的分享,聚焦实时湖仓的探索与建设、应用实践、问题思考及未来展望。内容涵盖京东物流通过Flink和Paimon等技术构建实时湖仓体系的过程,解决复杂业务场景下的数据分析挑战,如多维OLAP分析、大屏监控等。同时,文章详细介绍了基于StarRocks的湖仓一体方案,优化存储成本并提升查询效率,以及存算分离的应用实践。最后,对未来数据服务的发展方向进行了展望,计划推广长周期数据存储服务和原生数据湖建设,进一步提升数据分析能力。
301 1
京东物流基于Flink & StarRocks的湖仓建设实践
|
3月前
|
人工智能 关系型数据库 OLAP
光云科技 X AnalyticDB:构建 AI 时代下的云原生企业级数仓
AnalyticDB承载了光云海量数据的实时在线分析,为各个业务线的商家提供了丝滑的数据服务,实时物化视图、租户资源隔离、冷热分离等企业级特性,很好的解决了SaaS场景下的业务痛点,也平衡了成本。同时也基于通义+AnalyticDB研发了企业级智能客服、智能导购等行业解决方案,借助大模型和云计算为商家赋能。
243 17
|
3月前
|
存储 SQL 运维
中国联通网络资源湖仓一体应用实践
本文分享了中国联通技术专家李晓昱在Flink Forward Asia 2024上的演讲,介绍如何借助Flink+Paimon湖仓一体架构解决传统数仓处理百亿级数据的瓶颈。内容涵盖网络资源中心概况、现有挑战、新架构设计及实施效果。新方案实现了数据一致性100%,同步延迟从3小时降至3分钟,存储成本降低50%,为通信行业提供了高效的数据管理范例。未来将深化流式数仓与智能运维融合,推动数字化升级。
156 0
中国联通网络资源湖仓一体应用实践
|
3月前
|
存储 消息中间件 分布式计算
Hologres实时数仓在B站游戏的建设与实践
本文介绍了B站游戏业务中实时数据仓库的构建与优化过程。为满足日益增长的数据实时性需求,采用了Hologres作为核心组件优化传统Lambda架构,实现了存储层面的流批一体化及离线-实时数据的无缝衔接。文章详细描述了架构选型、分层设计(ODS、DWD、DIM、ADS)及关键技术挑战的解决方法,如高QPS点查、数据乱序重写等。目前,该实时数仓已广泛应用于运营分析、广告投放等多个场景,并计划进一步完善实时指标体系、扩展明细层应用及研发数据实时解析能力。
Hologres实时数仓在B站游戏的建设与实践
|
3天前
|
分布式计算 Serverless OLAP
实时数仓Hologres V3.1版本发布,Serverless型实例从零开始构建OLAP系统
Hologres推出Serverless型实例,支持按需计费、无需独享资源,适合新业务探索分析。高性能查询内表及MaxCompute/OSS外表,弹性扩展至512CU,性能媲美主流开源产品。新增Dynamic Table升级、直读架构优化及ChatBI解决方案,助力高效数据分析。
实时数仓Hologres V3.1版本发布,Serverless型实例从零开始构建OLAP系统
|
4月前
|
存储 分布式计算 MaxCompute
Hologres实时湖仓能力入门实践
本文由武润雪(栩染)撰写,介绍Hologres 3.0版本作为一体化实时湖仓平台的升级特性。其核心能力包括湖仓存储一体、多模式计算一体、分析服务一体及Data+AI一体,极大提升数据开发效率。文章详细解析了两种湖仓架构:MaxCompute + Hologres实现离线实时一体化,以及Hologres + DLF + OSS构建开放湖仓架构,并深入探讨元数据抽象、权限互通等重点功能,同时提供具体使用说明与Demo演示。
|
10天前
|
SQL DataWorks 关系型数据库
DataWorks+Hologres:打造企业级实时数仓与高效OLAP分析平台
本方案基于阿里云DataWorks与实时数仓Hologres,实现数据库RDS数据实时同步至Hologres,并通过Hologres高性能OLAP分析能力,完成一站式实时数据分析。DataWorks提供全链路数据集成与治理,Hologres支持实时写入与极速查询,二者深度融合构建离在线一体化数仓,助力企业加速数字化升级。
|
3月前
|
存储 消息中间件 Java
抖音集团电商流量实时数仓建设实践
本文基于抖音集团电商数据工程师姚遥在Flink Forward Asia 2024的分享,围绕电商流量数据处理展开。内容涵盖业务挑战、电商流量建模架构、流批一体实践、大流量任务调优及总结展望五个部分。通过数据建模与优化,实现效率、质量、成本和稳定性全面提升,数据质量达99%以上,任务性能提升70%。未来将聚焦自动化、低代码化与成本优化,探索更高效的流批一体化方案。
237 12
抖音集团电商流量实时数仓建设实践
|
4月前
|
SQL 分布式计算 数据挖掘
从湖仓分离到湖仓一体,四川航空基于 SelectDB 的多源数据联邦分析实践
川航选择引入 SelectDB 建设湖仓一体大数据分析引擎,取得了数据导入效率提升 3-6 倍,查询分析性能提升 10-18 倍、实时性提升至 5 秒内等收益。
从湖仓分离到湖仓一体,四川航空基于 SelectDB 的多源数据联邦分析实践

热门文章

最新文章