题目
Given an array of n integers where n > 1, nums, return an array output such that output[i] is equal to the product of all the elements of nums except nums[i].
Solve it without division and in O(n).
For example, given [1,2,3,4], return [24,12,8,6].
Follow up:
Could you solve it with constant space complexity?
(Note: The output array does not count as extra space
for the purpose of space complexity analysis.)
思路
对于i = 5 时 result[5] = (nums[0] * nums[1] * nums[2] * nums[3] * nums[4] ) * (nums[6] nums[7] * nums[8] * nums[9] * nums[10])
从上面开始看出对于第i个,我们只要知道它左边的连续乘积 和 它右边的连续乘积 就OK了。
代码
/*---------------------------------------
* 日期:2015-07-31
* 作者:SJF0115
* 题目: 238.Product of Array Except Self
* 网址:https://leetcode.com/problems/product-of-array-except-self/
* 结果:AC
* 来源:LeetCode
* 博客:
-----------------------------------------*/
#include <iostream>
#include <vector>
using namespace std;
class Solution {
public:
vector<int> productExceptSelf(vector<int>& nums) {
int size = nums.size();
vector<int> result(size,0);
vector<int> left(size,0);
vector<int> right(size,0);
int leftNum = 1,rightNum = 1;
// left[i] 为 nums[0]...nums[i-1]的连续乘积
// right[i] 为 nums[i+1]...nums[size-1]的连续乘积
for(int i = 0;i < size;++i){
left[i] = leftNum;
right[size-i-1] = rightNum;
leftNum *= nums[i];
rightNum *= nums[size-i-1];
}//for
// 计算不包括自己的所有乘积
for(int i = 0;i < size;++i){
result[i] = left[i] * right[i];
}//for
return result;
}
};
int main(){
Solution s;
vector<int> vec = {1,2};
vector<int> result = s.productExceptSelf(vec);
int size = result.size();
for(int i = 0;i < size;++i){
cout<<result[i]<<" ";
}//for
return 0;
}
运行时间