[LeetCode] Number of Longest Increasing Subsequence 最长递增序列的个数

简介:

Given an unsorted array of integers, find the number of longest increasing subsequence.

Example 1:

Input: [1,3,5,4,7]
Output: 2
Explanation: The two longest increasing subsequence are [1, 3, 4, 7] and [1, 3, 5, 7].

Example 2:

Input: [2,2,2,2,2]
Output: 5
Explanation: The length of longest continuous increasing subsequence is 1, and there are 5 subsequences' length is 1, so output 5.

Note: Length of the given array will be not exceed 2000 and the answer is guaranteed to be fit in 32-bit signed int.

这道题给了我们一个数组,让我们求最长递增序列的个数,题目中的两个例子也很好的说明了问题。那么对于这种求个数的问题,直觉告诉我们应该要使用DP来做。其实这道题在设计DP数组的时候有个坑,如果我们将dp[i]定义为到i位置的最长子序列的个数的话,那么递推公式不好找。但是如果我们将dp[i]定义为以nums[i]为结尾的递推序列的个数的话,再配上这些递推序列的长度,将会比较容易的发现递推关系。这里我们用len[i]表示以nums[i]为结尾的递推序列的长度,用cnt[i]表示以nums[i]为结尾的递推序列的个数,初始化都赋值为1,只要有数字,那么至少都是1。然后我们遍历数组,对于每个遍历到的数字nums[i],我们再遍历其之前的所有数字nums[j],当nums[i]小于等于nums[j]时,不做任何处理,因为不是递增序列。反之,则判断len[i]和len[j]的关系,如果len[i]等于len[j] + 1,说明nums[i]这个数字可以加在以nums[j]结尾的递增序列后面,并且以nums[j]结尾的递增序列个数可以直接加到以nums[i]结尾的递增序列个数上。如果len[i]小于len[j] + 1,说明我们找到了一条长度更长的递增序列,那么我们此时奖len[i]更新为len[j]+1,并且原本的递增序列都不能用了,直接用cnt[j]来代替。我们在更新完len[i]和cnt[i]之后,要更新mx和res,如果mx等于len[i],则把cnt[i]加到res之上;如果mx小于len[i],则更新mx为len[i],更新结果res为cnt[i],参见代码如下:

解法一:

public:
    int findNumberOfLIS(vector<int>& nums) {
        int res = 0, mx = 0, n = nums.size();
        vector<int> len(n, 1), cnt(n, 1);
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < i; ++j) {
                if (nums[i] <= nums[j]) continue;
                if (len[i] == len[j] + 1) cnt[i] += cnt[j];
                else if (len[i] < len[j] + 1) {
                    len[i] = len[j] + 1;
                    cnt[i] = cnt[j];
                }
            }
            if (mx == len[i]) res += cnt[i];
            else if (mx < len[i]) {
                mx = len[i];
                res = cnt[i];
            }
        }
        return res;
    }
};

下面这种方法跟上面的解法基本一样,就是把更新结果res放在了遍历完数组之后,我们利用mx来找到所有的cnt[i],累加到结果res上,参见代码如下:

解法二:

public:
    int findNumberOfLIS(vector<int>& nums) {
        int res = 0, mx = 0, n = nums.size();
        vector<int> len(n, 1), cnt(n, 1);
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < i; ++j) {
                if (nums[i] <= nums[j]) continue;
                if (len[i] == len[j] + 1) cnt[i] += cnt[j];
                else if (len[i] < len[j] + 1) {
                    len[i] = len[j] + 1;
                    cnt[i] = cnt[j];
                }
            }
            mx = max(mx, len[i]);
        }
        for (int i = 0; i < n; ++i) {
            if (mx == len[i]) res += cnt[i];
        }
        return res;
    }
};

参考资料:

https://discuss.leetcode.com/topic/102974/c-dp-with-explanation-o-n-2

https://discuss.leetcode.com/topic/103020/java-c-simple-dp-solution-with-explanation

本文转自博客园Grandyang的博客,原文链接:[LeetCode] Number of Longest Increasing Subsequence 最长递增序列的个数

,如需转载请自行联系原博主。

相关文章
|
4月前
|
算法 Python
【Leetcode刷题Python】剑指 Offer 33. 二叉搜索树的后序遍历序列
本文提供了一种Python算法,用以判断给定整数数组是否为某二叉搜索树的后序遍历结果,通过识别根节点并递归验证左右子树的值是否满足二叉搜索树的性质。
25 3
|
4月前
|
Python
【Leetcode刷题Python】105. 从前序与中序遍历序列构造二叉树
LeetCode上105号问题"从前序与中序遍历序列构造二叉树"的Python实现,通过递归方法根据前序和中序遍历序列重建二叉树。
30 3
|
4月前
|
算法 Python
【Leetcode刷题Python】300. 最长递增子序列
LeetCode 300题 "最长递增子序列" 的两种Python解决方案:一种使用动态规划,另一种使用贪心算法结合二分查找。
41 1
|
4月前
|
算法 Java
LeetCode初级算法题:子数组最大平均数+二叉树的最小深度+最长连续递增序列+柠檬水找零
LeetCode初级算法题:子数组最大平均数+二叉树的最小深度+最长连续递增序列+柠檬水找零
44 0
|
4月前
|
Python
【Leetcode刷题Python】674. 最长连续递增序列
LeetCode 674题 "最长连续递增序列" 的Python解决方案,使用动态规划算法找出给定整数数组中最长连续递增子序列的长度。
103 0
|
3月前
|
Unix Shell Linux
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
本文提供了几个Linux shell脚本编程问题的解决方案,包括转置文件内容、统计词频、验证有效电话号码和提取文件的第十行,每个问题都给出了至少一种实现方法。
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
|
4月前
|
Python
【Leetcode刷题Python】剑指 Offer 32 - III. 从上到下打印二叉树 III
本文介绍了两种Python实现方法,用于按照之字形顺序打印二叉树的层次遍历结果,实现了在奇数层正序、偶数层反序打印节点的功能。
61 6
|
4月前
|
搜索推荐 索引 Python
【Leetcode刷题Python】牛客. 数组中未出现的最小正整数
本文介绍了牛客网题目"数组中未出现的最小正整数"的解法,提供了一种满足O(n)时间复杂度和O(1)空间复杂度要求的原地排序算法,并给出了Python实现代码。
124 2
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
280页PDF,全方位评估OpenAI o1,Leetcode刷题准确率竟这么高
【10月更文挑战第24天】近年来,OpenAI的o1模型在大型语言模型(LLMs)中脱颖而出,展现出卓越的推理能力和知识整合能力。基于Transformer架构,o1模型采用了链式思维和强化学习等先进技术,显著提升了其在编程竞赛、医学影像报告生成、数学问题解决、自然语言推理和芯片设计等领域的表现。本文将全面评估o1模型的性能及其对AI研究和应用的潜在影响。
40 1
|
3月前
|
数据采集 负载均衡 安全
LeetCode刷题 多线程编程九则 | 1188. 设计有限阻塞队列 1242. 多线程网页爬虫 1279. 红绿灯路口
本文提供了多个多线程编程问题的解决方案,包括设计有限阻塞队列、多线程网页爬虫、红绿灯路口等,每个问题都给出了至少一种实现方法,涵盖了互斥锁、条件变量、信号量等线程同步机制的使用。
LeetCode刷题 多线程编程九则 | 1188. 设计有限阻塞队列 1242. 多线程网页爬虫 1279. 红绿灯路口