Given an unsorted array of integers, find the number of longest increasing subsequence.
Example 1:
Input: [1,3,5,4,7] Output: 2 Explanation: The two longest increasing subsequence are [1, 3, 4, 7] and [1, 3, 5, 7].
Example 2:
Input: [2,2,2,2,2] Output: 5 Explanation: The length of longest continuous increasing subsequence is 1, and there are 5 subsequences' length is 1, so output 5.
Note: Length of the given array will be not exceed 2000 and the answer is guaranteed to be fit in 32-bit signed int.
这道题给了我们一个数组,让我们求最长递增序列的个数,题目中的两个例子也很好的说明了问题。那么对于这种求个数的问题,直觉告诉我们应该要使用DP来做。其实这道题在设计DP数组的时候有个坑,如果我们将dp[i]定义为到i位置的最长子序列的个数的话,那么递推公式不好找。但是如果我们将dp[i]定义为以nums[i]为结尾的递推序列的个数的话,再配上这些递推序列的长度,将会比较容易的发现递推关系。这里我们用len[i]表示以nums[i]为结尾的递推序列的长度,用cnt[i]表示以nums[i]为结尾的递推序列的个数,初始化都赋值为1,只要有数字,那么至少都是1。然后我们遍历数组,对于每个遍历到的数字nums[i],我们再遍历其之前的所有数字nums[j],当nums[i]小于等于nums[j]时,不做任何处理,因为不是递增序列。反之,则判断len[i]和len[j]的关系,如果len[i]等于len[j] + 1,说明nums[i]这个数字可以加在以nums[j]结尾的递增序列后面,并且以nums[j]结尾的递增序列个数可以直接加到以nums[i]结尾的递增序列个数上。如果len[i]小于len[j] + 1,说明我们找到了一条长度更长的递增序列,那么我们此时奖len[i]更新为len[j]+1,并且原本的递增序列都不能用了,直接用cnt[j]来代替。我们在更新完len[i]和cnt[i]之后,要更新mx和res,如果mx等于len[i],则把cnt[i]加到res之上;如果mx小于len[i],则更新mx为len[i],更新结果res为cnt[i],参见代码如下:
解法一:
public: int findNumberOfLIS(vector<int>& nums) { int res = 0, mx = 0, n = nums.size(); vector<int> len(n, 1), cnt(n, 1); for (int i = 0; i < n; ++i) { for (int j = 0; j < i; ++j) { if (nums[i] <= nums[j]) continue; if (len[i] == len[j] + 1) cnt[i] += cnt[j]; else if (len[i] < len[j] + 1) { len[i] = len[j] + 1; cnt[i] = cnt[j]; } } if (mx == len[i]) res += cnt[i]; else if (mx < len[i]) { mx = len[i]; res = cnt[i]; } } return res; } };
下面这种方法跟上面的解法基本一样,就是把更新结果res放在了遍历完数组之后,我们利用mx来找到所有的cnt[i],累加到结果res上,参见代码如下:
解法二:
public: int findNumberOfLIS(vector<int>& nums) { int res = 0, mx = 0, n = nums.size(); vector<int> len(n, 1), cnt(n, 1); for (int i = 0; i < n; ++i) { for (int j = 0; j < i; ++j) { if (nums[i] <= nums[j]) continue; if (len[i] == len[j] + 1) cnt[i] += cnt[j]; else if (len[i] < len[j] + 1) { len[i] = len[j] + 1; cnt[i] = cnt[j]; } } mx = max(mx, len[i]); } for (int i = 0; i < n; ++i) { if (mx == len[i]) res += cnt[i]; } return res; } };
参考资料:
https://discuss.leetcode.com/topic/102974/c-dp-with-explanation-o-n-2
https://discuss.leetcode.com/topic/103020/java-c-simple-dp-solution-with-explanation
本文转自博客园Grandyang的博客,原文链接:[LeetCode] Number of Longest Increasing Subsequence 最长递增序列的个数
,如需转载请自行联系原博主。