[家里蹲大学数学杂志]第297期丘成桐大学生数学竞赛2014年分析与方程个人赛试题

简介:   1. 设 $f:\bbR\to \bbR$ 连续, 且满足 $$\bex \sup_{x,y\in\bbR}|f(x+y)-f(x)-f(y)|

 

 

1. 设 $f:\bbR\to \bbR$ 连续, 且满足 $$\bex \sup_{x,y\in\bbR}|f(x+y)-f(x)-f(y)|<\infty, \eex$$ $$\bex \vlm{n}\frac{f(n)}{n}=2014. \eex$$ 试证: $$\bex \sup_{x\in\bbR}|f(x)-2014x|<\infty. \eex$$

 

2. 设 $\sed{f_i}_{i=1}^n$ 在单位圆 $D=\sed{z;\ |z|<1}$ 内解析, 在 $\bar D$ 上连续, 试证: $$\bex \phi(z)=\sum_{i=1}^n |f_i(z)| \eex$$ 在 $\p D$ 上取得最大值.

 

3. 试证: 如果存在一个共型映射把圆环 $\sed{z;\ r_1<|z|<r_2}$ 映为圆环 $\sed{z;\ \rho_1<|z|<\rho_2}$, 则 $$\bex \frac{r_1}{r_2}=\frac{\rho_1}{\rho_2}. \eex$$

 

4. 设 $U(\xi)$ 是 $\bbR$ 上的有界函数, 且只有有限多个间断点, 试证: $$\bex P_U(x,y)=\frac{1}{\pi}\int_{\bbR} \frac{y}{(x-\xi)^2+y^2}U(\xi)\rd \xi\quad\sex{y>0} \eex$$ 是调和的; 并且如果 $\xi$ 为 $U$ 的连续点, 则 $$\bex \lim_{(x,y)\to (\xi,0)}P_U(x,y)=U(\xi). \eex$$

 

5. 试证海森堡不等式: $$\bex \int_{\bbR} x^2|f(x)|^2\rd x\cdot \int_{\bbR} \xi^2|\hat f(\xi)|^2\rd \xi \geq \frac{1}{16\pi^2}\sez{\int_{\bbR} |f(x)|^2\rd x}^2. \eex$$ 

 

本文由zwb565055403首发.

 

我给了一个解答, 请见link.

目录
相关文章
|
机器学习/深度学习 Serverless
[家里蹲大学数学杂志]第405期中国科学院数学与系统科学研究院2015年夏令营分析与代数试题
该试卷分两部分: 分析 $5$ 题 (共 $50$ 分), 代数 $5$ 题 (共 $50$ 分). 考试时间: $120$ 分钟   1. ($10'$) 对哪些实数 $\al$, 级数 $\dps{\vsm{n}\sex{\frac{1}{n}-\sin \frac{1}{n}}^\al}$ 收敛?     2.
824 0
[家里蹲大学数学杂志]第393期中山大学2015年计算数学综合考试考博试题回忆版
试题有 6 个大题, 选作 4 题即可, 下面回忆的是其中的 4 题.   1. ($25'$) (1). 试证: $$\bex x,y>0,\ x\neq y\ra (x+y)\ln \frac{x+y}{2}0$, $b$ 为常数, 试证迭代格式 (大概如此) $$\bex x^{(k+1)...
991 0
|
机器学习/深度学习 Perl
[家里蹲大学数学杂志]第390期中国科学院大学2014-2015-1微积分期末考试试题参考解答
  1. ($5'$) 利用 $\ve-N$ 语言证明 $$\bex \vlm{n}\frac{2015\cdot 2^n+20\sin n}{n!}=0. \eex$$   证明: 对 $\forall\ \ve>0$, 取 $$\bex N=\sez{\frac{4050}{\ve}...
1105 0
|
机器学习/深度学习 Perl
[家里蹲大学数学杂志]第389期中国科学院大学2014-2015-1微积分期中考试试题参考解答
  1. 设 $A,B,C$ 都是集合 $M$ 的子集, 请证明: $$\bex (C\subset A)\wedge (C\subset B)\lra (C\subset A\cap B). \eex$$   证明: 显然成立.
1246 0
|
关系型数据库 RDS Perl
[家里蹲大学数学杂志]第388期一套泛函分析期末试题参考解答
  1. ($20$ 分) 证明非线性积分方程 $$\bex x(t)+\lm \int_a^b K(t,s,x(s))\rd s=y(t),\quad \forall\ t\in [a,b] \eex$$ 在 $|\lm|$ 足够小时有唯一连续解.
1059 0
|
关系型数据库 Perl RDS
[家里蹲大学数学杂志]第322期赣南师范学院数学竞赛培训第11套模拟试卷
  数学分析部分     1. 已知函数 $f(x)=\ln x-ax$, 其中 $a$ 为常数. 如果 $f(x)$ 有两个零点 $x_1,x_2$. 试证: $x_1x_2>e^2$.
695 0
[家里蹲大学数学杂志]第248期东北师范大学2013年数学分析考研试题
1 计算 $$\bex \lim_{x\to \infty} \sex{\frac{4x+3}{4x-1}}^{2x-1}. \eex$$ 2计算 $$\bex \lim_{x\to \infty}\frac{1}{n}\sum_{i=1}^n \ln \frac{i\pi}{n}.
874 0
[家里蹲大学数学杂志]第256期第五届[2013年]全国大学生数学竞赛[非数学类]试题
1($4\times 6'=24'$) 解答下列各题. (1)求极限 $\dps{\ls{n}\sez{1+\sin\pi\sqrt{1+4n^2}}^n}$. (2)证明广义积分 $\dps{\int_0^\infty\frac{\sin x}{x}\rd x}$ 不是绝对收敛的.
962 0
|
Perl
[家里蹲大学数学杂志]第254期第五届[2013年]全国大学生数学竞赛[数学类]试题
1 ($15'$) 平面 $\bbR^2$ 上两个半径为 $r$ 的圆 $C_1$ 和 $C_2$ 外切于 $P$ 点, 将圆 $C_2$ 沿 $C_1$ 的圆周 (无滑动) 滚动一周, 这时, $C_2$ 上的 $P$ 点也随 $C_2$ 的运动而运动.
809 0
[家里蹲大学数学杂志]第261期安徽大学2008年高等代数考研试题参考解答
1 ($20'=5\times 4'$) 填空题. (1)设 $$\bex \sex{\ba{ccc} 1&1&-1\\ 0&2&2\\ 1&-1&0 \ea}X=\sex{\ba{ccc} 1&-1&1\\ 1&1&0\\ 2&1&1 \ea}, \eex$$ 则 $X=?$ 解答: $$\b...
959 0