[再寄小读者之数学篇](2014-07-16 高阶导数的一个表达式)

简介: 设 $f\in C^{n+1}(\bbR)$, 试证: 对 $\forall\ a\in\bbR$, $$\bex \frac{\rd^n}{\rd x^n}\sez{\frac{f(x)-f(a)}{x-a}}_{x=a}=\frac{f^{(n+1)}(a)}{n+1}.

设 $f\in C^{n+1}(\bbR)$, 试证: 对 $\forall\ a\in\bbR$, $$\bex \frac{\rd^n}{\rd x^n}\sez{\frac{f(x)-f(a)}{x-a}}_{x=a}=\frac{f^{(n+1)}(a)}{n+1}. \eex$$

 

证明: 对 $n$ 用数学归纳法. 当 $n=1$ 时, $$\beex \bea \frac{\rd}{\rd x}\sez{\frac{f(x)-f(a)}{x-a}}_{x=a} &=\lim_{x\to a}\frac{\frac{f(x)-f(a)}{x-a}-f'(a)}{x-a}\\ &=\lim_{x\to a}\frac{f(x)-f(a)-f'(a)(x-a)}{(x-a)^2}\\ &=\lim_{x\to a}\frac{f'(x)-f'(a)}{2(x-a)}\\ &=\frac{f''(a)}{2}. \eea \eeex$$ 假设结论在 $n$ 时成立, 则在 $n+1$ 时, $$\beex \bea \frac{\rd^{n+1}}{\rd x^{n+1}}\sez{\frac{f(x)-f(a)}{x-a}}_{x=a} &=\frac{\rd^n}{\rd x^n}\sez{\frac{\rd}{\rd x}\sex{\frac{f(x)-f(a)}{x-a}}}_{x=a}\\ &=\frac{\rd }{\rd x^n} \sez{ \frac{f'(x)-f'(a)}{x-a} -\frac{\frac{f(x)-f(a)}{x-a}-f'(a)}{x-a} }_{x=a}\\ &=\frac{(f')^{n+1}(a)}{n+1} -\frac{1}{n+1}\frac{\rd ^{n+1}}{\rd x^{n+1}}\sez{\frac{f(x)-f(a)}{x-a}}_{x=a}\quad\sex{\mbox{归纳假设}}. \eea \eeex$$ 于是 $$\bex \frac{\rd^{n+1}}{\rd x^{n+1}}\sez{\frac{f(x)-f(a)}{x-a}}_{x=a} =\frac{1}{1+\frac{1}{n+1}}\cdot \frac{1}{n+1} f^{(n+2)}(a) =\frac{f^{(n+2)}(a)}{n+2}. \eex$$

目录
相关文章
[再寄小读者之数学篇](2014-11-19 一个代数不等式)
$$\bex \sqrt{x^2+x+1}+ \sqrt{y^2+y+1} +\sqrt{x^2-x+1}+ \sqrt{y^2-y+1}\geq 2(x+y). \eex$$ Ref. [Proof Without Words: An Algebraic Inequality, The College Mathematics Journal].
650 0
[再寄小读者之数学篇](2014-11-14 矩阵的应用: 代数)
Hilbert 零点定理: 设 $\bbF$ 是一个代数闭域, $L$ 是 $\bbF[x_1,\cdots,x_n]$ 的一个真理想, 则 $$\bex \exists\ (a_1,\cdots,a_n)\in\bbF^n\ra f(a_1,\cdots,a_n)=0,\quad\forall\ f\in L.
653 0
[再寄小读者之数学篇](2014-07-16 两个条件给出二阶导中值)
设 $f(x)$ 在 $[a,b]$ 上可微, $f(a)=f(b)=0$, 则对 $\forall\ x\in [a,b]$, 存在 $\xi\in (a,b)$, 使得 $$\bex f(x)=\frac{f''(\xi)}{2}(x-a)(x-b).
532 0
[再寄小读者之数学篇](2014-07-16 凹函数与次线性性)
设 $f$ 在 $[0,c]$ 上连续, $f(0)=0$, 且当 $x\in (0,c)$ 时, $f''(x)
569 0
[再寄小读者之数学篇](2014-07-16 任意阶导数在零处为零的一个充分条件)
设 $f(x)$ 在 $\bbR$ 上任意阶可导, 且 $$\bex \forall\ n\in\bbZ^+,\ f\sex{\frac{1}{n}}=0. \eex$$ 试证: $f^{(n)}(0)=0$.
868 0
[再寄小读者之数学篇](2014-07-16 二阶中值)
设 $f(x)$ 在 $[a,b]$ 上二阶可微, 试证: 对任意 $c\in (a,b)$, 存在 $\xi\in (a,b)$ 使得 $$\bex \frac{f''(\xi)}{2}=\frac{f(a)}{(a-b)(a-c)} +\frac{f(b)}{(b-a)(b-c)}+\frac{f(c)}{(c-a)(c-b)}.
592 0
|
机器学习/深度学习
[再寄小读者之数学篇](2014-07-17 行列式的计算)
试计算矩阵 $A=(\sin(\al_i+\al_j))_{n\times n}$ ($n\geq2$) 的行列式.   提示:  根据行列式的性质: (1) 行列式两列线性相关, 则行列式为零; (2) 若记第 $k$ 列为向量 $\al$ 的行列式为 $D(\al)$, 则 $$\b...
731 0
[再寄小读者之数学篇](2014-06-23 向量公式)
$$\bex \n\times({\bf a}\times{\bf b})=({\bf b}\cdot\n){\bf a} -({\bf a}\cdot\n){\bf b}+{\bf a}(\n\cdot{\bf b})-{\bf b}(\n\cdot{\bf a}).
552 0
[再寄小读者之数学篇](2014-06-21 微分不等式)
Assume that $a$ is a positive constant, $x(t),y(t)$ are two nonnegative $C^1(\bbR^+)$ functions, and $D(t)$ is a nonnegative function, satisfying $$\b...
589 0
[再寄小读者之数学篇](2014-06-21 向量公式)
$$\bex (\n\times{\bf b})\times{\bf b}=-\n\cfrac{|{\bf b}|^2}{2}+({\bf b}\cdot\n){\bf b}. \eex$$ see [D.
604 0