[再寄小读者之数学篇](2014-07-16 两个条件给出二阶导中值)

简介: 设 $f(x)$ 在 $[a,b]$ 上可微, $f(a)=f(b)=0$, 则对 $\forall\ x\in [a,b]$, 存在 $\xi\in (a,b)$, 使得 $$\bex f(x)=\frac{f''(\xi)}{2}(x-a)(x-b).

设 $f(x)$ 在 $[a,b]$ 上可微, $f(a)=f(b)=0$, 则对 $\forall\ x\in [a,b]$, 存在 $\xi\in (a,b)$, 使得 $$\bex f(x)=\frac{f''(\xi)}{2}(x-a)(x-b). \eex$$

 

提示:  对 $x\in (a,b)$, 考虑函数 $$\bex F(t)=\frac{f(x)}{(x-a)(x-b)}(t-a)(t-b)-f(t),\quad t\in [a,b]. \eex$$ 则 $$\bex F(a)=F(x)=F(b)=0. \eex$$ 应用 Rolle 定理两次即得结论.

目录
相关文章
|
算法
梯度下降算法详解(从下山比喻、数学推导到代码实现)
梯度下降算法详解(从下山比喻、数学推导到代码实现)
1902 0
|
算法 Java
数学建模常用算法:人工鱼群算法(AFAS)求解二元函数最小值+限定x,y范围测试【java实现--详细注释+Matlab绘制小鱼游动过程】
数学建模常用算法:人工鱼群算法(AFAS)求解二元函数最小值+限定x,y范围测试【java实现--详细注释+Matlab绘制小鱼游动过程】
179 0
|
人工智能 开发者
微积分的解释 | 学习笔记
快速学习微积分的解释
微积分的解释 | 学习笔记
|
关系型数据库 RDS
[再寄小读者之数学篇](2015-06-08 一个有意思的定积分计算)
$$\beex \bea \int_0^\frac{\pi}{4}\ln (1+\tan x)\rd x &=\int_0^\frac{\pi}{4} \ln \frac{\cos x+\sin x}{\cos x}\rd x\\ &=\int_0^\frac{\pi}{4} \ln \sez{\s...
728 0
|
机器学习/深度学习 资源调度
[再寄小读者之数学篇](2014-11-21 关于积和式的一个不等式)
在 Rajendra Bhatia 的 Matrix Analysis 中, Exercise I.5.8 说: Prove that for any matrices $A,B$ we have $$\bex |\per (AB)|^2\leq \per (AA^*)\cdot \per (B^*B).
668 0
[再寄小读者之数学篇](2014-07-16 高阶导数的一个表达式)
设 $f\in C^{n+1}(\bbR)$, 试证: 对 $\forall\ a\in\bbR$, $$\bex \frac{\rd^n}{\rd x^n}\sez{\frac{f(x)-f(a)}{x-a}}_{x=a}=\frac{f^{(n+1)}(a)}{n+1}.
553 0
[再寄小读者之数学篇](2014-07-16 任意阶导数在零处为零的一个充分条件)
设 $f(x)$ 在 $\bbR$ 上任意阶可导, 且 $$\bex \forall\ n\in\bbZ^+,\ f\sex{\frac{1}{n}}=0. \eex$$ 试证: $f^{(n)}(0)=0$.
880 0
[再寄小读者之数学篇](2014-07-16 二阶中值)
设 $f(x)$ 在 $[a,b]$ 上二阶可微, 试证: 对任意 $c\in (a,b)$, 存在 $\xi\in (a,b)$ 使得 $$\bex \frac{f''(\xi)}{2}=\frac{f(a)}{(a-b)(a-c)} +\frac{f(b)}{(b-a)(b-c)}+\frac{f(c)}{(c-a)(c-b)}.
600 0
[再寄小读者之数学篇](2014-06-28 证明级数几乎处处收敛)
设 $f\in L(\bbR)$, 试证: $$\bex \vsm{n}f(n^2x) \eex$$ 在 $\bbR$ 上几乎处处收敛到一 Lebesgue 函数. 证明: 由 $f\in L(\bbR)$ 知 $|f|\in L(\bbR)$ (see [程其襄, 张奠宙, 魏国强, 胡善文, ...
751 0
[再寄小读者之数学篇](2014-06-23 向量公式)
$$\bex \n\times({\bf a}\times{\bf b})=({\bf b}\cdot\n){\bf a} -({\bf a}\cdot\n){\bf b}+{\bf a}(\n\cdot{\bf b})-{\bf b}(\n\cdot{\bf a}).
557 0

热门文章

最新文章