[再寄小读者之数学篇](2014-07-17 行列式的计算)

简介: 试计算矩阵 $A=(\sin(\al_i+\al_j))_{n\times n}$ ($n\geq2$) 的行列式.   提示:  根据行列式的性质: (1) 行列式两列线性相关, 则行列式为零; (2) 若记第 $k$ 列为向量 $\al$ 的行列式为 $D(\al)$, 则 $$\b...

试计算矩阵 $A=(\sin(\al_i+\al_j))_{n\times n}$ ($n\geq2$) 的行列式.

 

提示:  根据行列式的性质:

(1) 行列式两列线性相关, 则行列式为零;

(2) 若记第 $k$ 列为向量 $\al$ 的行列式为 $D(\al)$, 则 $$\bex D(\al+\beta)=D(\al)+D(\beta), \eex$$ 我们有 $$\beex \bea |A|&=\sum_{k=1}^n \sev{\ba{ccccc} \cos \al_1\sin\al_1&\cdots&\sin \al_1\cos \al_k&\cdots&\cos\al_1\sin \al_n\\ \vdots&&\vdots&&\vdots\\ \cos \al_n\sin \al_1&\cdots&\cos \al_n\cos \al_k&\cdots&\cos \al_n\sin\al_n \ea}\\ &=0. \eea \eeex$$

目录
相关文章
[再寄小读者之数学篇](2014-12-24 乘积型不等式)
$$\bex \int f^2g \leq C\sen{f}_{L^2}^\frac{5q-4}{3q-2} \sen{\p_3f}_{L^q}^\frac{q}{3q-2} \sen{g}_{L^2}^\frac{q-2}{3q-2} \sen{\n_hg}_{L^2}^\frac{2q}{3q-...
842 0
[再寄小读者之数学篇](2014-11-14 矩阵的应用: 代数)
Hilbert 零点定理: 设 $\bbF$ 是一个代数闭域, $L$ 是 $\bbF[x_1,\cdots,x_n]$ 的一个真理想, 则 $$\bex \exists\ (a_1,\cdots,a_n)\in\bbF^n\ra f(a_1,\cdots,a_n)=0,\quad\forall\ f\in L.
655 0
[再寄小读者之数学篇](2014-11-14 矩阵的应用: 数论)
1. 代数数: $\al\in\bbC$ 称为代数数, 如果它是某个系数为有理数的非零多项式的根. 2. 代数数全体构成一个域. (利用伙伴矩阵, 张量积很容易证明) 3. 代数整数: $\al\in\bbC$ 称为代数整数, 如果它是某个首一整系数多项式的根.
582 0
[再寄小读者之数学篇](2014-11-14 矩阵的应用: 多项式)
多项式 $$\bex p(z)=z^n+a_{n-1}x^{n-1}+\cdots+a_0 \eex$$ 的根的估计.
581 0
[再寄小读者之数学篇](2014-11-19 一个代数不等式)
$$\bex \sqrt{x^2+x+1}+ \sqrt{y^2+y+1} +\sqrt{x^2-x+1}+ \sqrt{y^2-y+1}\geq 2(x+y). \eex$$ Ref. [Proof Without Words: An Algebraic Inequality, The College Mathematics Journal].
653 0
[再寄小读者之数学篇](2014-07-16 凹函数与次线性性)
设 $f$ 在 $[0,c]$ 上连续, $f(0)=0$, 且当 $x\in (0,c)$ 时, $f''(x)
573 0
[再寄小读者之数学篇](2014-07-16 二阶中值)
设 $f(x)$ 在 $[a,b]$ 上二阶可微, 试证: 对任意 $c\in (a,b)$, 存在 $\xi\in (a,b)$ 使得 $$\bex \frac{f''(\xi)}{2}=\frac{f(a)}{(a-b)(a-c)} +\frac{f(b)}{(b-a)(b-c)}+\frac{f(c)}{(c-a)(c-b)}.
595 0
[再寄小读者之数学篇](2014-07-16 与对数有关的不等式)
试证: $$\bex (1+a)\ln (1+a)+(1+b)\ln (1+b)0. \eex$$   提示:  对函数 $f(x)=x\ln x$, 有 $$\bex f'(x)=\ln x+1,\quad f''(x)=\frac{1}{x}>0,\quad (x>0).
652 0
[再寄小读者之数学篇](2014-06-23 向量公式)
$$\bex \n\times({\bf a}\times{\bf b})=({\bf b}\cdot\n){\bf a} -({\bf a}\cdot\n){\bf b}+{\bf a}(\n\cdot{\bf b})-{\bf b}(\n\cdot{\bf a}).
553 0