[再寄小读者之数学篇](2014-07-16 凹函数与次线性性)

简介: 设 $f$ 在 $[0,c]$ 上连续, $f(0)=0$, 且当 $x\in (0,c)$ 时, $f''(x)

设 $f$ 在 $[0,c]$ 上连续, $f(0)=0$, 且当 $x\in (0,c)$ 时, $f''(x)<0$. 试证: 当 $0<a<b<a+b<c$ 时, $$\bex f(a+b)<f(a)+f(b). \eex$$

 

证明: 对固定的 $b>0$, 令 $$\bex F(x)=f(x+b)-f(x)-f(b), \eex$$ 则 $F(0)=0$; 且由 $f''(x)<0$ 知 $$\bex F'(x)=f'(x+b)-f'(x)<0. \eex$$ 于是 $$\bex F(a)<F(0)=0. \eex$$

目录
相关文章
数学问题-反射定律&折射定律的向量形式推导
数学问题-反射定律&折射定律的向量形式推导
247 0
|
算法
梯度下降算法详解(从下山比喻、数学推导到代码实现)
梯度下降算法详解(从下山比喻、数学推导到代码实现)
1565 0
[再寄小读者之数学篇](2014-11-14 矩阵的应用: 有限几何)
每个有限几何的线的条数 $\geq$ 点的个数. 若一个有限几何的线数 $=$ 点数, 则任意两条线都相交.
495 0
[再寄小读者之数学篇](2014-11-14 矩阵的应用: 代数)
Hilbert 零点定理: 设 $\bbF$ 是一个代数闭域, $L$ 是 $\bbF[x_1,\cdots,x_n]$ 的一个真理想, 则 $$\bex \exists\ (a_1,\cdots,a_n)\in\bbF^n\ra f(a_1,\cdots,a_n)=0,\quad\forall\ f\in L.
657 0
[再寄小读者之数学篇](2014-11-14 矩阵的应用: 多项式)
多项式 $$\bex p(z)=z^n+a_{n-1}x^{n-1}+\cdots+a_0 \eex$$ 的根的估计.
583 0
[再寄小读者之数学篇](2014-07-16 二阶中值)
设 $f(x)$ 在 $[a,b]$ 上二阶可微, 试证: 对任意 $c\in (a,b)$, 存在 $\xi\in (a,b)$ 使得 $$\bex \frac{f''(\xi)}{2}=\frac{f(a)}{(a-b)(a-c)} +\frac{f(b)}{(b-a)(b-c)}+\frac{f(c)}{(c-a)(c-b)}.
597 0
|
机器学习/深度学习
[再寄小读者之数学篇](2014-07-17 行列式的计算)
试计算矩阵 $A=(\sin(\al_i+\al_j))_{n\times n}$ ($n\geq2$) 的行列式.   提示:  根据行列式的性质: (1) 行列式两列线性相关, 则行列式为零; (2) 若记第 $k$ 列为向量 $\al$ 的行列式为 $D(\al)$, 则 $$\b...
735 0
[再寄小读者之数学篇](2014-07-16 任意阶导数在零处为零的一个充分条件)
设 $f(x)$ 在 $\bbR$ 上任意阶可导, 且 $$\bex \forall\ n\in\bbZ^+,\ f\sex{\frac{1}{n}}=0. \eex$$ 试证: $f^{(n)}(0)=0$.
873 0
[再寄小读者之数学篇](2014-06-21 微分不等式)
Assume that $a$ is a positive constant, $x(t),y(t)$ are two nonnegative $C^1(\bbR^+)$ functions, and $D(t)$ is a nonnegative function, satisfying $$\b...
590 0
[再寄小读者之数学篇](2014-06-19 微分等式的结论)
证明: $\dps{\int_0^{2\pi}\sex{\int_x^{2\pi}\cfrac{\sin t}{t}\rd t}\rd x=0}$.     证明: $$\beex \bea \int_0^{2\pi}\sex{\int_x^{2\pi}\cfrac{\sin t}{t}\rd ...
545 0