[詹兴致矩阵论习题参考解答]习题4.10

简介: 10. 设 $A,B\in M_n$ 并且 $AB$ 为 Hermite 矩阵, 则对任何酉不变范数 $$\bex \sen{AB}\leq \sen{\Re(BA)}. \eex$$       证明: (1).

10. 设 $A,B\in M_n$ 并且 $AB$ 为 Hermite 矩阵, 则对任何酉不变范数 $$\bex \sen{AB}\leq \sen{\Re(BA)}. \eex$$

 

 

 

证明: (1). 先证明 $$\bex x\prec y\ra |x|\prec_w|y|. \eex$$ 事实上, 由 $x\prec y$ 知 $$\beex \bea x&=Ay\quad\sex{A:\mbox{ 双随机矩阵}}\\ &=\sum \al_kP^ky\quad\sex{\al_k\geq 0, \sum \al_k=1,\ P^k\in \Pi_n,\mbox{ 由 Birkhoff 定理}}\\ &=\sum_{\sigma\in S_n} \al_\sigma y_\sigma, \eea \eeex$$ 而 $$\bex |x| \leq \sum_{\sigma \in S_n} \al_\sigma |y_\sigma| =\sum_{\sigma \in S_n} \al_\sigma Q^\sigma |y|\prec |y|\quad\sex{Q^\sigma\in \Pi_n}. \eex$$ 故定理 3.9 (ii), $$\bex |x|\prec_w|y|. \eex$$ (2). 往证题目. 由 Fan 支配定理, 仅须验证 $$\bex s(AB)\prec s(\Re(BA)). \eex$$ 事实上, $$\beex \bea s(AB)&=|\lm(AB)|\quad\sex{AB:\mbox{ Hermite 阵},\ \lm(AB)\mbox{ 为实向量}}\\ &=|\lm(BA)|\\ &\prec_w |\lm(\Re (BA))|\\ &\quad\sex{ \lm(BA)=\Re \lm(BA) \prec \lm (\Re(BA)),\mbox{ 第三章第 11 题; 再据 }(1) }\\ &\prec_w s(\Re(BA))\quad\sex{\mbox{推论 4.11}}. \eea \eeex$$

目录
相关文章
[詹兴致矩阵论习题参考解答]习题6.13
13. (Sinkhorn) 设 $A$ 是一个方的正矩阵, 则存在对角元素为正数的两个对角矩阵 $D_1$ 和 $D_2$ 使得 $D_1AD_2$ 为双随机矩阵 (doubly stochastic matrix).
583 0
|
机器学习/深度学习
[詹兴致矩阵论习题参考解答]习题6.3
3. 设 $\lm$ 是一个复数. 证明: 存在非负方阵 $A$ 使得 $\lm$ 是 $A$ 的一个特征值.       证明:   (1). 首先 $A$ 的阶数须 $\geq 3$. 当 $n=1$ 时, 非负方阵的特征值为非负实数.
677 0
[詹兴致矩阵论习题参考解答]习题6.4
4. 设 $A$ 是个不可约非负方阵, $0\leq t\leq 1$, 则 $$\bex \rho[tA+(1-t)A^T]\geq \rho(A). \eex$$       证明:   (1).
540 0
[詹兴致矩阵论习题参考解答]习题5.1
1. $A\in M_n$ 称为正交投影矩阵如果 $A$ 是 Hermite 矩阵且幂等: $$\bex A^*=A=A^2. \eex$$ 证明: 若 $A,B\in M_n$ 为正交投影矩阵, 则 $\sen{A-B}_\infty \leq 1$.
693 0
|
机器学习/深度学习
[詹兴致矩阵论习题参考解答]习题4.4
4. 设 $A=(a_{ij})\in M_n$, 则 $$\bex \sex{|a_{11}|,\cdots,|a_{nn}|}\prec_ws(A). \eex$$       证明: 一般我们都用 Fan 支配原理的顺推情形: $$\bex s(A)\prec s(B)\lra \mbox{ 对任意酉不变范数 }\sen{\cdot},\ \sen{A}\leq \sen{B}.
639 0
[詹兴致矩阵论习题参考解答]习题4.2
2. (Thompson). 设 $A,B\in M_n$, 则存在酉矩阵 $U, V\in M_n$ 满足 $$\bex |A+B|\leq U|A|U^*+V|B|V^*. \eex$$       证明: (1).
731 0
[詹兴致矩阵论习题参考解答]习题4.14
14. 设 $A,B\in M_n$, 则对 $M_n$ 上的任何酉不变范数有 $$\bex \frac{1}{2}\sen{\sex{\ba{cc} A+B&0\\ 0&A+B \ea}}\leq \sen{\sex{\ba{cc} A&0\\ 0&B \ea}} \leq \sen{\sex{\ba{cc} |A|+|B|&0\\ 0&0 \ea}}.
652 0
[詹兴致矩阵论习题参考解答]习题4.1
1. (Fan-Hoffman). 设 $A\in M_n$, 记 $\Re A=(A+A^*)/2$. 则 $$\bex \lm_j(\Re A)\leq s_j(A),\quad j=1,\cdots,n.
502 0
[詹兴致矩阵论习题参考解答]习题4.6
6. 设 $A,B\in M_n$ 半正定, 则 $$\bex s_j(A-B)\leq s_j\sex{ \sex{\ba{cc} A&0\\ 0&B \ea}},\quad j=1,\cdots,n.
559 0
[詹兴致矩阵论习题参考解答]习题4.7
7. 设 $A_0\in M_n$ 正定, $A_i\in M_n$ 半正定, $i=1,\cdots,k$, 则 $$\bex \tr \sum_{j=1}^k \sex{\sum_{i=0}^jA_i}^{-2}A_j
692 0