[詹兴致矩阵论习题参考解答]习题7.4

简介: 4. 怎样的符号模式要求所有特征值都互不相同呢?       证明: Open problems.

4. 怎样的符号模式要求所有特征值都互不相同呢?

 

 

 

证明: Open problems.

目录
相关文章
|
资源调度 机器学习/深度学习 Perl
[詹兴致矩阵论习题参考解答]习题7.5
5. 元素属于 $\sed{0,*}$ 的矩阵称为零模式矩阵. 设 $A$ 是零模式矩阵, 用 $Q_\bbF(A)$ 记元素属于域 $\bbF$ 的具有零模式 $A$ 的矩阵的集合, 即若 $B\in Q_F(A)$, $B=(b_{ij})$, $A=(a_{ij})$, 则 $b_{ij}=0$ 当且仅当 $a_{ij}=0$.
707 0
[詹兴致矩阵论习题参考解答]习题6.12
12. 设 $A$ 是个 $n$ 阶振荡矩阵, 则 $A^{n-1}$ 是全面正矩阵.       证明: 我相信可以利用定理 6.27 (Wielandt) 或者其证明思路, 但是目前还没有做出来.
589 0
|
资源调度
[詹兴致矩阵论习题参考解答]习题6.10
10. 非本原指标为 $k$ 的 $n$ 阶不可约非负矩阵的正元素的个数可能是哪些数呢?       解答: 只需利用定理 6.28 (Frobenius), 探讨 $$\bex f(x_1,\cdots,x_n)=\sum_{i=1}^n x_ix_{i+1} \eex$$ 在条件 $$\bex x_i>0,\quad\sum_{i=1}^n x_i=n \eex$$ 下的最小最大值.
609 0
[詹兴致矩阵论习题参考解答]习题6.2
2. 设 $A$ 是个非负方阵且存在一个正整数 $p$ 使得 $A^p>0$, 则对所有正整数 $q\geq p$, $A^q>0$.       证明: 不妨设 $n\geq 2$. 由定理 6.
627 0
|
Perl
[詹兴致矩阵论习题参考解答]习题5.2
2. 用 $\im A$ 表示 $A\in M_n$ 的像空间: $$\bex \im A=\sed{Ax;x\in\bbC^n}. \eex$$ 设 $A,B\in M_n$ 为正交投影矩阵, 满足 $$\bex \sen{A-B}_\infty
571 0
[詹兴致矩阵论习题参考解答]习题4.6
6. 设 $A,B\in M_n$ 半正定, 则 $$\bex s_j(A-B)\leq s_j\sex{ \sex{\ba{cc} A&0\\ 0&B \ea}},\quad j=1,\cdots,n.
574 0
[詹兴致矩阵论习题参考解答]习题4.16
16. (Fan-Hoffman) 设 $A\in M_n$, $A=UP$ 为极分解, $U$ 为酉矩阵, $P$ 为半正定矩阵. 若 $W\in M_n$ 为酉矩阵, 则 $$\bex \sen{A-U}\leq \sen{A-W}\leq \sen{A+U} \eex$$ 对任何酉不变范数成立.
624 0
[詹兴致矩阵论习题参考解答]习题4.14
14. 设 $A,B\in M_n$, 则对 $M_n$ 上的任何酉不变范数有 $$\bex \frac{1}{2}\sen{\sex{\ba{cc} A+B&0\\ 0&A+B \ea}}\leq \sen{\sex{\ba{cc} A&0\\ 0&B \ea}} \leq \sen{\sex{\ba{cc} |A|+|B|&0\\ 0&0 \ea}}.
671 0
[詹兴致矩阵论习题参考解答]习题4.12
12. 设 $p,q$ 为正实数, 满足 $\dps{\frac{1}{p}+\frac{1}{q}=1}$, 则对 $A,B\in M_n$ 和酉不变范数有 $$\bex \sen{AB}\leq \sen{|A|^p}^\frac{1}{p} \sen{|B|^q}^\frac{1}{q}.
612 0
[詹兴致矩阵论习题参考解答]习题4.1
1. (Fan-Hoffman). 设 $A\in M_n$, 记 $\Re A=(A+A^*)/2$. 则 $$\bex \lm_j(\Re A)\leq s_j(A),\quad j=1,\cdots,n.
520 0