[詹兴致矩阵论习题参考解答]习题6.15

简介: 15. (Hu-Li-Zhan) 秩为 $k$ 的 $n$ 阶对称 $0-1$ 矩阵中 $1$ 的个数可能是哪些数呢?       解答: 见 [Q. Hu, Y.Q. Li, X.Z. Zhan, Possible numbers of ones in $0-1$ matrices wit...

15. (Hu-Li-Zhan) 秩为 $k$ 的 $n$ 阶对称 $0-1$ 矩阵中 $1$ 的个数可能是哪些数呢?

 

 

 

解答: 见 [Q. Hu, Y.Q. Li, X.Z. Zhan, Possible numbers of ones in $0-1$ matrices with a given rank, Linear Multilinear Algebra, 53 (2005), 435--443].

目录
相关文章
[詹兴致矩阵论习题参考解答]习题7.6
6. 举例说明: 存在那样的实方阵 $A$, $A$ 的零元素的个数大于 $A$ 的 Jordan 标准形的零元素的个数.       解答: 想法就是利用第 5 节的 Jordan 标准形的组合刻画.
663 0
[詹兴致矩阵论习题参考解答]习题6.11
11. (Gasca-Pena) 一个 $n$ 阶可逆矩阵 $A$ 是全面非负的当且仅当对每个 $1\leq k\leq n$, $$\bex \det A[1,2,\cdots,k]>0, \eex$$ $$\bex \det A[\al\mid 1,2,\cdots,k]\geq 0,\quad...
575 0
[詹兴致矩阵论习题参考解答]习题7.4
4. 怎样的符号模式要求所有特征值都互不相同呢?       证明: Open problems.
482 0
[詹兴致矩阵论习题参考解答]习题6.4
4. 设 $A$ 是个不可约非负方阵, $0\leq t\leq 1$, 则 $$\bex \rho[tA+(1-t)A^T]\geq \rho(A). \eex$$       证明:   (1).
563 0
|
机器学习/深度学习
[詹兴致矩阵论习题参考解答]习题6.3
3. 设 $\lm$ 是一个复数. 证明: 存在非负方阵 $A$ 使得 $\lm$ 是 $A$ 的一个特征值.       证明:   (1). 首先 $A$ 的阶数须 $\geq 3$. 当 $n=1$ 时, 非负方阵的特征值为非负实数.
697 0
[詹兴致矩阵论习题参考解答]习题4.5
5. 设 $A,B\in M_n$, 则 $$\bex s_j(AB)\leq \sen{A}_\infty s_j(B),\quad s_j(AB)\leq \sen{B}_\infty s_j(A),\quad j=1,\cdots,n.
548 0
|
资源调度 前端开发 rax
[詹兴致矩阵论习题参考解答]习题4.10
10. 设 $A,B\in M_n$ 并且 $AB$ 为 Hermite 矩阵, 则对任何酉不变范数 $$\bex \sen{AB}\leq \sen{\Re(BA)}. \eex$$       证明: (1).
573 0
|
Perl
[詹兴致矩阵论习题参考解答]习题4.3
3. $G\in M_n$ 称为一个秩 $k$ 部分等距矩阵, 若 $$\bex s_1(G)=\cdots=s_k(G)=1,\quad s_{k+1}(G)=\cdots=s_n(G)=0. \eex$$ 证明对 $X\in M_n$, $$\bex \sum_{j=1}^k s_j(X) =\...
692 0
[詹兴致矩阵论习题参考解答]习题4.1
1. (Fan-Hoffman). 设 $A\in M_n$, 记 $\Re A=(A+A^*)/2$. 则 $$\bex \lm_j(\Re A)\leq s_j(A),\quad j=1,\cdots,n.
523 0
[詹兴致矩阵论习题参考解答]习题3.6
6. 设 $A,B\in M_n$, $A$ 是正定矩阵, $B$ 是 Hermite 矩阵. 则 $$\bex A+B\mbox{ 正定当且仅当 }\lm_j(A^{-1}B)>-1,\quad j=1,\cdots,n.
551 0

热门文章

最新文章

下一篇
开通oss服务