[詹兴致矩阵论习题参考解答]习题6.10

简介: 10. 非本原指标为 $k$ 的 $n$ 阶不可约非负矩阵的正元素的个数可能是哪些数呢?       解答: 只需利用定理 6.28 (Frobenius), 探讨 $$\bex f(x_1,\cdots,x_n)=\sum_{i=1}^n x_ix_{i+1} \eex$$ 在条件 $$\bex x_i>0,\quad\sum_{i=1}^n x_i=n \eex$$ 下的最小最大值.

10. 非本原指标为 $k$ 的 $n$ 阶不可约非负矩阵的正元素的个数可能是哪些数呢?

 

 

 

解答: 只需利用定理 6.28 (Frobenius), 探讨 $$\bex f(x_1,\cdots,x_n)=\sum_{i=1}^n x_ix_{i+1} \eex$$ 在条件 $$\bex x_i>0,\quad\sum_{i=1}^n x_i=n \eex$$ 下的最小最大值. 这个我已经注意到了, 不过叫我去做, 可能还是做不出来, 或者说做不全. 努力哦, 有了想法必须要去实现, 不然梦想终归是幻想. 参考 [X.Z. Zhan, Extremal numbers of positive entries of imprimitive nonnegative matrices, Linear Algebra Appl., 424 (2007), 132--138], 我们有非本原指标为 $k$ 的 $n$ 阶不可约非负矩阵的正元素的个数 $\sigma$ 的范围为 $$\bex k\leq 4\ra 2n-k\leq \sigma\leq \sez{\frac{n^2}{k}}; \eex$$ $$\bex k\geq 5\ra 2n-k\leq \sigma\leq 2n-k+\sez{\frac{(n-k)^2}{4}}. \eex$$

目录
相关文章
[詹兴致矩阵论习题参考解答]习题6.11
11. (Gasca-Pena) 一个 $n$ 阶可逆矩阵 $A$ 是全面非负的当且仅当对每个 $1\leq k\leq n$, $$\bex \det A[1,2,\cdots,k]>0, \eex$$ $$\bex \det A[\al\mid 1,2,\cdots,k]\geq 0,\quad...
573 0
|
Perl
[詹兴致矩阵论习题参考解答]习题6.9
9. (Hopf) 将 $n$ 阶正矩阵 $A=(a_{ij})$ 的特征值按模从大到小排列为 $$\bex \rho(A)>|\lm_2|\geq \cdot \geq |\lm_n|, \eex$$ 并记 $$\bex \al=\max\sed{a_{ij};1\leq i,j\leq n}, \quad \beta=\min \max\sed{a_{ij};1\leq i,j\leq n}.
532 0
[詹兴致矩阵论习题参考解答]习题6.4
4. 设 $A$ 是个不可约非负方阵, $0\leq t\leq 1$, 则 $$\bex \rho[tA+(1-t)A^T]\geq \rho(A). \eex$$       证明:   (1).
557 0
|
资源调度
[詹兴致矩阵论习题参考解答]习题6.8
8. 设 $A$ 是个不可约奇异 $M$-矩阵, 则存在正向量 $x$ 满足 $Ax=0$.       证明: 由 $A$ 为 $M$-矩阵知 $$\bex A=cI-B,\quad c\geq \rho(B),\quad B\geq 0.
628 0
[詹兴致矩阵论习题参考解答]习题6.5
5. (Levinger, 1970) 设 $A$ 是个不可约非负方阵, 则函数 $$\bex f(t)=\rho[tA+(1-t)A^T] \eex$$ 在 $[0,1/2]$ 上递增, 在 $[1/2,1]$ 上递减.
520 0
|
资源调度
[詹兴致矩阵论习题参考解答]习题5.3
3. (Bhatia-Davis) 设 $A,B\in M_n$ 为酉矩阵, 则 $$\bex \rd(\sigma(A),\sigma(B))\leq \sen{A-B}_\infty. \eex$$     证明: [见 R.
689 0
|
资源调度 Perl
[詹兴致矩阵论习题参考解答]习题5.4
4. (G.M. Krause) 令 $$\bex \lm_1=1,\quad \lm_2=\frac{4+5\sqrt{3}I}{13},\quad \lm_3=\frac{-1+2\sqrt{3}i}{13},\quad v=\sex{\sqrt{\frac{5}{8}},\frac{1}{2},\sqrt{\frac{1}{8}}}^T.
740 0
[詹兴致矩阵论习题参考解答]习题4.5
5. 设 $A,B\in M_n$, 则 $$\bex s_j(AB)\leq \sen{A}_\infty s_j(B),\quad s_j(AB)\leq \sen{B}_\infty s_j(A),\quad j=1,\cdots,n.
544 0
|
机器学习/深度学习
[詹兴致矩阵论习题参考解答]习题4.4
4. 设 $A=(a_{ij})\in M_n$, 则 $$\bex \sex{|a_{11}|,\cdots,|a_{nn}|}\prec_ws(A). \eex$$       证明: 一般我们都用 Fan 支配原理的顺推情形: $$\bex s(A)\prec s(B)\lra \mbox{ 对任意酉不变范数 }\sen{\cdot},\ \sen{A}\leq \sen{B}.
648 0
[詹兴致矩阵论习题参考解答]习题4.12
12. 设 $p,q$ 为正实数, 满足 $\dps{\frac{1}{p}+\frac{1}{q}=1}$, 则对 $A,B\in M_n$ 和酉不变范数有 $$\bex \sen{AB}\leq \sen{|A|^p}^\frac{1}{p} \sen{|B|^q}^\frac{1}{q}.
610 0