[詹兴致矩阵论习题参考解答]习题4.17

简介: 17. (Ando-Zhan) 设 $A,B\in M_n$ 半正定, $\sen{\cdot}$ 是一个酉不变范数, 则 $$\bex \sen{(A+B)^r}\leq \sen{A^r+B^r},\quad (0

17. (Ando-Zhan) 设 $A,B\in M_n$ 半正定, $\sen{\cdot}$ 是一个酉不变范数, 则 $$\bex \sen{(A+B)^r}\leq \sen{A^r+B^r},\quad (0<r\leq 1), \eex$$ $$\bex \sen{(A+B)^r}\geq \sen{A^r+B^r},\quad (1\leq r<\infty). \eex$$

 

证明: (1). 先证当 $0<r\leq 1$ 时, $$\bex \sen{(A+B)^r}\leq \sen{A^r+B^r}. \eex$$ 由 Fan 支配原理, 仅须验证 $$\bex s((A+B)^r)\prec_w s(A^r+B^r). \eex$$ 而对 $\forall\ 1\leq k\leq n$, $$\bex \sum_{i=1}^k \lm_i((A+B)^r) \leq \sum_{i=1}^k \lm_i(A^r+B^r). \eex$$ 由第三章第 11 题的证明, 这又等价于证明: $$\bex \max_{\sen{x_i}=1\atop i=1,\cdots,k} \sum_{i=1}^k \sef{(A+B)^rx_i,x_i} \leq \max_{\sen{x_i}=1\atop i=1,\cdots,k} \sum_{i=1}^k \sef{(A^r+B^r)x_i,x_i}. \eex$$ 又 $f(t)=t^r$ 是 $[0,\infty)$ 上的算子单调函数, 有积分表示 (引理 4.13) $$\bex t^r=\al+\beta t+\int_0^\infty \frac{st}{s+t}\rd \mu(s),\quad \beta\geq 0. \eex$$ 我们仅须证明对 $s>0$, $$\beex \bea \max_{\sen{x_i}=1\atop i=1,\cdots,k} \sum_{i=1}^k \sef{s(A+B)(sI+A+B)^{-1}x_i,x_i} &\leq \max_{\sen{x_i}=1\atop i=1,\cdots,k}\sum_{i=1}^k \sef{sA(sI+A)^{-1}x_i,x_i}\\ &\quad +\sum_{i=1}^k \sef{sB(sI+B)^{-1}x_i,x_i}. \eea \eeex$$ 分别用 $A,B$ 代替 $A/s$, $B/s$, 即要证明 $$\beex \bea \max_{\sen{x_i}=1\atop i=1,\cdots,k}\sum_{i=1}^k \sef{(A+B)(I+A+B)^{-1}x_i,x_i} &\leq \max_{\sen{x_i}=1\atop i=1,\cdots,k}\sum_{i=1}^k \sef{A(I+A)^{-1}x_i,x_i}\\ &\quad +\max_{\sen{x_i}=1\atop i=1,\cdots,k}\sum_{i=1}^k \sef{B(I+B)^{-1}x_i,x_i}. \eea \eeex$$ 选取 $x_i$ 为从属于 $A+B$ 的第 $i$ 大的特征值的单位特征向量, 即要证明 $$\bex \sum_{i=1}^k \sef{(A+B)(I+A+B)^{-1}x_i,x_i} \leq \sum_{i=1}^k \sef{A(I+A)^{-1}x_i,x_i} +\sum_{i=1}^k \sef{B(I+B)^{-1}x_i,x_i}. \eex$$ 记 $C=(I+A+B)^{-\frac{1}{2}}$, 则 $$\bex (A+B)(I+A+B)^{-1} =(A+B)C^2 =C(A+B)C =CAC+CBC. \eex$$ 故又仅须证明 $$\bee\label{4_17_A} \sum_{i=1}^k \sef{CACx_i,x_i} \leq \sum_{i=1}^k \sef{A(I+A)^{-1}x_i,x_i}, \eee$$ $$\bee\label{4_17_B} \sum_{i=1}^k \sef{CBCx_i,x_i} \leq \sum_{i=1}^k \sef{B(I+B)^{-1}x_i,x_i}. \eee$$ 这两式的证明雷同, 故仅须证明 \eqref{4_17_A} 如下. 由 $$\beex \bea (A+B)x_i=\lm_ix_i&\ra (I+A+B)x_i=(\lm_i+1)x_i\\ &\ra C^2x_i=\frac{1}{1+\lm_i}x_i\\ &\ra Cx_i=\frac{1}{\sqrt{1+\lm_i}}x_i \eea \eeex$$ 知 $x_i$ 为从属于 $C$ 的第 $i$ 小的特征值 $\mu_i$ 的单位特征向量, $i=1,\cdots,k$. 令 $$\bex U_1=(x_1,\cdots,x_k), \eex$$ 即要证明 $$\bee\label{4_17_tr} \tr\sez{U_1^*CACU_1}\leq \tr \sez{ U_1^*A(A+I)^{-1}U_1}. \eee$$ 设 $x_i$ 定义如前, $i=k+1,\cdots,n$, $$\bex U_2=(x_{k+1},\cdots,x_n),\quad U=(U_1,U_2), \eex$$ 则 $$\bex CU_1=U_1D_1,\quad CU_2=U_2D_2,\quad U\mbox{ 为酉阵}, \eex$$ 其中 $$\bex D_1=\diag(\mu_1,\cdots,\mu_k),\quad D_2=\diag(\mu_{k+1},\cdots,\mu_n),\quad \mu_1\leq \cdots\leq \mu_n. \eex$$ 这样, $$\beex \bea \tr\sez{U_1^*CACU_1} &=\sen{A^\frac{1}{2}CU_1}_F^2\\ &=\sen{U^*A^\frac{1}{2}U_1D_1}_F^2\\ &=\sen{\sex{ U_1^*A^\frac{1}{2}U_1D_1\atop U_2^*A^\frac{1}{2}U_1D_1 }}_F^2\\ &=\sen{U_1^*A^\frac{1}{2}U_1D_1}_F^2 +\sen{U_2^*A^\frac{1}{2}U_1D_1}_F^2\\ &\leq \mu_k^2\sen{U_1^*A^\frac{1}{2}U_1D_1}_F^2 +\sen{U_2^*A^\frac{1}{2}U_1}_F^2;\\ \tr\sez{U_1^*A(A+I)^{-1}U_1} &=\tr\sez{U_1^*A^\frac{1}{2}(A+I)^{-1}A^\frac{1}{2} U_1}\\ &\geq \tr\sez{U_1^*A^\frac{1}{2}CA^\frac{1}{2} U_1}\\ &=\sen{CA^\frac{1}{2}U_1}_F^2\\ &=\sen{U_1^*A^\frac{1}{2}C}_F^2\\ &=\sen{U_1^*A^\frac{1}{2}CU}_F^2\\ &=\sen{U_1^*A^\frac{1}{2}(U_1D_1,U_2D_2)}_F^2\\ &=\sen{U_1^*A^\frac{1}{2}U_1D_1}_F^2 +\sen{U_1^*A^\frac{1}{2}U_2D_2}_F^2\\ &\geq \sen{U_1^*A^\frac{1}{2}U_1D_1}_F^2 +\mu_k^2\sen{U_1^*A^\frac{1}{2}U_2}_F^2. \eea \eeex$$

 

(2). 当 $r\geq 1$ 时, 令 $g(t)=t^r=f^{-1}(t)$, $f(t)=t^\frac{1}{r}$, 则由 (1), $$\bex s(f[g(A)+g(B)])\prec_w s(f[g(A)]+f[g(A)])=s(A+B). \eex$$ 由 $g$ 是非负的递增凸函数, 定理 3.21, 及类似于定理 1.3 的映射定理, $$\bex s(g(A)+g(B))\prec_ws(g(A+B)). \eex$$ 据 Fan 支配原理, 即得结论. 

目录
相关文章
[詹兴致矩阵论习题参考解答]习题7.1
1. (Maybee) 设 $A$ 是一个树符号模式. 证明:   (1). 若 $A$ 的每个简单 $2$-圈都是正的, 则对于任何 $B\in Q(A)$, 存在可逆的实对角矩阵 $D$ 使得 $D^{-1}AD$ 为对称矩阵.
643 0
[詹兴致矩阵论习题参考解答]习题6.13
13. (Sinkhorn) 设 $A$ 是一个方的正矩阵, 则存在对角元素为正数的两个对角矩阵 $D_1$ 和 $D_2$ 使得 $D_1AD_2$ 为双随机矩阵 (doubly stochastic matrix).
596 0
|
资源调度
[詹兴致矩阵论习题参考解答]习题6.7
7. 设 $A$ 是个非负幂零矩阵, 即存在正整数 $p$ 使得 $A^p=0$. 则 $A$ 置换相似于一个上三角矩阵.       证明: 由 $A^p=0$ 知 $\sigma(A)=0$, 而 $\rho(A)=0$.
761 0
|
资源调度
[詹兴致矩阵论习题参考解答]习题6.10
10. 非本原指标为 $k$ 的 $n$ 阶不可约非负矩阵的正元素的个数可能是哪些数呢?       解答: 只需利用定理 6.28 (Frobenius), 探讨 $$\bex f(x_1,\cdots,x_n)=\sum_{i=1}^n x_ix_{i+1} \eex$$ 在条件 $$\bex x_i>0,\quad\sum_{i=1}^n x_i=n \eex$$ 下的最小最大值.
601 0
|
资源调度
[詹兴致矩阵论习题参考解答]习题5.3
3. (Bhatia-Davis) 设 $A,B\in M_n$ 为酉矩阵, 则 $$\bex \rd(\sigma(A),\sigma(B))\leq \sen{A-B}_\infty. \eex$$     证明: [见 R.
684 0
|
资源调度 Perl
[詹兴致矩阵论习题参考解答]习题5.5
5. (Friedland) 给定 $A\in M_n$, $\lm_i\in \bbC$, $i=1,\cdots,n$. 证明: 存在对角矩阵 $D\in M_n$ 使得 $\sigma(A+D)=\sed{\lm_1,\cdots,\lm_n}$, 并且满足上述条件的对角矩阵 $D$ 只有有限多个.
551 0
[詹兴致矩阵论习题参考解答]习题4.11
11. $M_n$ 上的范数 $\sen{\cdot}$ 称为是对称的, 若 $$\bex \sen{ABC}\leq \sen{A}_\infty\sen{C}_\infty \sen{B},\quad \forall\ A,B,C\in M_n.
581 0
[詹兴致矩阵论习题参考解答]习题4.14
14. 设 $A,B\in M_n$, 则对 $M_n$ 上的任何酉不变范数有 $$\bex \frac{1}{2}\sen{\sex{\ba{cc} A+B&0\\ 0&A+B \ea}}\leq \sen{\sex{\ba{cc} A&0\\ 0&B \ea}} \leq \sen{\sex{\ba{cc} |A|+|B|&0\\ 0&0 \ea}}.
662 0
|
机器学习/深度学习
[詹兴致矩阵论习题参考解答]习题4.4
4. 设 $A=(a_{ij})\in M_n$, 则 $$\bex \sex{|a_{11}|,\cdots,|a_{nn}|}\prec_ws(A). \eex$$       证明: 一般我们都用 Fan 支配原理的顺推情形: $$\bex s(A)\prec s(B)\lra \mbox{ 对任意酉不变范数 }\sen{\cdot},\ \sen{A}\leq \sen{B}.
645 0
[詹兴致矩阵论习题参考解答]习题4.12
12. 设 $p,q$ 为正实数, 满足 $\dps{\frac{1}{p}+\frac{1}{q}=1}$, 则对 $A,B\in M_n$ 和酉不变范数有 $$\bex \sen{AB}\leq \sen{|A|^p}^\frac{1}{p} \sen{|B|^q}^\frac{1}{q}.
604 0