[詹兴致矩阵论习题参考解答]习题5.5

简介: 5. (Friedland) 给定 $A\in M_n$, $\lm_i\in \bbC$, $i=1,\cdots,n$. 证明: 存在对角矩阵 $D\in M_n$ 使得 $\sigma(A+D)=\sed{\lm_1,\cdots,\lm_n}$, 并且满足上述条件的对角矩阵 $D$ 只有有限多个.

5. (Friedland) 给定 $A\in M_n$, $\lm_i\in \bbC$, $i=1,\cdots,n$. 证明: 存在对角矩阵 $D\in M_n$ 使得 $\sigma(A+D)=\sed{\lm_1,\cdots,\lm_n}$, 并且满足上述条件的对角矩阵 $D$ 只有有限多个.

 

 

证明: 见 [S. Friedland, Matrices with prescribed off-diagonal elements, Israel J. Math., 11 (1972), 184--189].

目录
相关文章
[詹兴致矩阵论习题参考解答]习题7.4
4. 怎样的符号模式要求所有特征值都互不相同呢?       证明: Open problems.
476 0
[詹兴致矩阵论习题参考解答]习题7.1
1. (Maybee) 设 $A$ 是一个树符号模式. 证明:   (1). 若 $A$ 的每个简单 $2$-圈都是正的, 则对于任何 $B\in Q(A)$, 存在可逆的实对角矩阵 $D$ 使得 $D^{-1}AD$ 为对称矩阵.
645 0
[詹兴致矩阵论习题参考解答]习题6.13
13. (Sinkhorn) 设 $A$ 是一个方的正矩阵, 则存在对角元素为正数的两个对角矩阵 $D_1$ 和 $D_2$ 使得 $D_1AD_2$ 为双随机矩阵 (doubly stochastic matrix).
599 0
|
资源调度
[詹兴致矩阵论习题参考解答]习题6.8
8. 设 $A$ 是个不可约奇异 $M$-矩阵, 则存在正向量 $x$ 满足 $Ax=0$.       证明: 由 $A$ 为 $M$-矩阵知 $$\bex A=cI-B,\quad c\geq \rho(B),\quad B\geq 0.
627 0
[詹兴致矩阵论习题参考解答]习题6.5
5. (Levinger, 1970) 设 $A$ 是个不可约非负方阵, 则函数 $$\bex f(t)=\rho[tA+(1-t)A^T] \eex$$ 在 $[0,1/2]$ 上递增, 在 $[1/2,1]$ 上递减.
519 0
|
资源调度
[詹兴致矩阵论习题参考解答]习题6.7
7. 设 $A$ 是个非负幂零矩阵, 即存在正整数 $p$ 使得 $A^p=0$. 则 $A$ 置换相似于一个上三角矩阵.       证明: 由 $A^p=0$ 知 $\sigma(A)=0$, 而 $\rho(A)=0$.
767 0
|
Perl
[詹兴致矩阵论习题参考解答]习题6.9
9. (Hopf) 将 $n$ 阶正矩阵 $A=(a_{ij})$ 的特征值按模从大到小排列为 $$\bex \rho(A)>|\lm_2|\geq \cdot \geq |\lm_n|, \eex$$ 并记 $$\bex \al=\max\sed{a_{ij};1\leq i,j\leq n}, \quad \beta=\min \max\sed{a_{ij};1\leq i,j\leq n}.
530 0
[詹兴致矩阵论习题参考解答]习题4.13
13. (Bhatia-Davis) 设 $A,B,X\in M_n$, 则 $$\bex \sen{AXB^*}\leq \frac{1}{2}\sen{A^*AX+XB^*B} \eex$$ 对任何酉不变范数成立.
531 0
|
Perl
[詹兴致矩阵论习题参考解答]习题4.3
3. $G\in M_n$ 称为一个秩 $k$ 部分等距矩阵, 若 $$\bex s_1(G)=\cdots=s_k(G)=1,\quad s_{k+1}(G)=\cdots=s_n(G)=0. \eex$$ 证明对 $X\in M_n$, $$\bex \sum_{j=1}^k s_j(X) =\...
685 0
[詹兴致矩阵论习题参考解答]习题3.10
10. 设 $A,B$ 是同阶半正定矩阵, $0\leq s\leq 1$. 证明: $$\bex \sen{A^sB^s}_\infty \leq \sen{AB}_\infty^s. \eex$$     证明:   (1).
702 0