[Everyday Mathematics]20150204

简介: 设 $k_0>0$, $\phi:[k_0,\infty)\to[0,\infty)$ 是有界递减函数, 并且 $$\bex \phi(k)\leq \frac{A}{(k-h)^\al}\phi(h)^\beta,\quad k>h>k_0, \eex$$ 其中 $A,\al>0$, $0h>k_0.

设 $k_0>0$, $\phi:[k_0,\infty)\to[0,\infty)$ 是有界递减函数, 并且 $$\bex \phi(k)\leq \frac{A}{(k-h)^\al}\phi(h)^\beta,\quad k>h>k_0, \eex$$ 其中 $A,\al>0$, $0<\beta<1$. 试证: $$\bex \phi(k)\leq \frac{C_*}{k^\mu},\quad k>2k_0, \eex$$ 其中 $$\bex \mu=\frac{\al}{1-\beta},\quad C_*=2^{\mu+\frac{\mu}{1-\beta}}A^\frac{1}{1-\beta}. \eex$$

 

证明: 设 $$\bex \psi(h)=A^{-\frac{1}{1-\beta}} \phi(h), \eex$$ 则 $$\bex \psi(k)\leq\frac{1}{(k-h)^\al} \psi(h)^\beta,\quad k>h>k_0. \eex$$ 对 $k_0<h<k$, 定义序列 $$\beex \bea \psi(t_0)&\leq \frac{1}{(t_0-t_1)^\al} \psi(t_1)^\beta\\ &\leq \frac{1}{(t_0-t_1)^\al}\frac{1}{(t_1-t_2)^{\al \beta}} \psi(t_2)^{\beta^2}\\ &\leq \cdots\\ &\leq \prod_{j=1}^n (t_{j-1}-t_j)^{-\al \beta^{j-1}} \psi(t_n)^{\beta^n}. \eea \eeex$$ 注意到 $$\bex \prod_{j=1}^n (t_{j-1}-t_j)^{-\al \beta^{j-1}} =(k-h)^{-\frac{\al}{1-\beta}(1-\beta^n)} 2^{\al\sez{\frac{1-\beta^n}{(1-\beta)^n}-\frac{n\beta^n}{1-\beta}}}, \eex$$ 我们知取 $k>2k_0$, $h=k/2$ 后 $$\bex \psi(k)\leq \sex{\frac{k}{2}}^{-\frac{\al}{1-\beta}(1-\beta^n)} 2^{\al\sez{\frac{1-\beta^n}{(1-\beta)^n}-\frac{n\beta^n}{1-\beta}}} \psi(t_0)^{\beta^n}. \eex$$ 令 $n\to\infty$, 有 $$\bex \psi(k)\leq k^{-\mu}2^{\mu+\frac{\mu}{1-\beta}},\quad \phi(k)\leq \frac{2^{\mu+\frac{\mu}{1-\beta}}A^\frac{1}{1-\beta}}{k^\mu}. \eex$$

目录
相关文章
[Everyday Mathematics]20150306
在王高雄等《常微分方程(第三版)》习题 2.5 第 1 题第 (32) 小题: $$\bex \frac{\rd y}{\rd x}+\frac{1+xy^3}{1+x^3y}=0. \eex$$   解答: $$\beex \bea 0&=(1+xy^3)\rd x+(1+x^3y)\rd y...
656 0
[Everyday Mathematics]20150228
试证: $$\bex \int_0^\infty \sin\sex{x^3+\frac{\pi}{4}}\rd x =\frac{\sqrt{6}+\sqrt{2}}{4}\int_0^\infty e^{-x^3}\rd x. \eex$$
851 0
[Everyday Mathematics]20150303
设 $f$ 是 $\bbR$ 上的 $T$ - 周期函数, 试证: $$\bex \int_T^\infty\frac{f(x)}{x}\rd x\mbox{ 收敛 } \ra \int_0^T f(x)\rd x=0. \eex$$
793 0
[Everyday Mathematics]20150226
设 $z\in\bbC$ 适合 $|z+1|>2$. 试证: $$\bex |z^3+1|>1. \eex$$
659 0
[Everyday Mathematics]20150224
设 $A,B$ 是 $n$ 阶实对称矩阵, 它们的特征值 $>1$. 试证: $AB$ 的特征值的绝对值 $>1$.
469 0
[Everyday Mathematics]20150220
试求 $$\bex \sum_{k=0}^\infty\frac{1}{(4k+1)(4k+2)(4k+3)(4k+4)}. \eex$$
512 0
[Everyday Mathematics]20150218
设 $A,B$ 是 $n$ 阶复方阵, 适合 $$\bex A^2B+BA^2=2ABA. \eex$$ 试证: 存在 $k\in\bbZ^+$, 使得 $(AB-BA)^k=0$.
488 0
|
机器学习/深度学习
[Everyday Mathematics]20150211 Carlson inequality
$$\bex a_n\geq 0\ra \vsm{n}a_n\leq \sqrt{\pi}\sex{\vsm{n}a_n^2}^{1/4} \sex{\vsm{n}n^2a_n^2}^{1/4}, \eex$$ $$\bex \int_0^\infty |f(x)|\rd x \leq\sqrt{\...
605 0
[Everyday Mathematics]20150205
设 $\phi:[k_0,\infty)\to[0,\infty)$ 是有界递减函数, 并且 $$\bex \phi(k)\leq \sex{\frac{A}{h-k}}^\al\phi(h)^\beta,\quad k>h\geq k_0, \eex$$ 其中 $A,\al>0$, $\beta>1$.
651 0