[Everyday Mathematics]20150218

简介: 设 $A,B$ 是 $n$ 阶复方阵, 适合 $$\bex A^2B+BA^2=2ABA. \eex$$ 试证: 存在 $k\in\bbZ^+$, 使得 $(AB-BA)^k=0$.

设 $A,B$ 是 $n$ 阶复方阵, 适合 $$\bex A^2B+BA^2=2ABA. \eex$$ 试证: 存在 $k\in\bbZ^+$, 使得 $(AB-BA)^k=0$.

目录
相关文章
[Everyday Mathematics]20150305
设 $f\in C^2[0,1]$, $$\bex f(0)=-1,\quad f'(1)=3,\quad \int_0^1 xf''(x)\rd x=1. \eex$$ 试求 $f(1)$.   解答: $$\beex \bea 1&=\int_0^1 x\rd f'(x)\\ &=xf'(x...
693 0
[Everyday Mathematics]20150304
证明: $$\bex \frac{2}{\pi}\int_0^\infty \frac{1-\cos 1\cos \lm-\lm \sin 1\sin \lm}{1-\lm^2}\cos \lm x\rd \lm =\sedd{\ba{ll} |\sin x|,&-1
685 0
[Everyday Mathematics]20150228
试证: $$\bex \int_0^\infty \sin\sex{x^3+\frac{\pi}{4}}\rd x =\frac{\sqrt{6}+\sqrt{2}}{4}\int_0^\infty e^{-x^3}\rd x. \eex$$
851 0
[Everyday Mathematics]20150224
设 $A,B$ 是 $n$ 阶实对称矩阵, 它们的特征值 $>1$. 试证: $AB$ 的特征值的绝对值 $>1$.
469 0
[Everyday Mathematics]20150221
设 $y_n=x_n^2$ 如下归纳定义: $$\bex x_1=\sqrt{5},\quad x_{n+1}=x_n^2-2\ (n=1,2,\cdots). \eex$$ 试求 $\dps{\vlm{n}\frac{x_1x_2\cdots x_n}{x_{n+1}}}$.
602 0
|
机器学习/深度学习
[Everyday Mathematics]20150211 Carlson inequality
$$\bex a_n\geq 0\ra \vsm{n}a_n\leq \sqrt{\pi}\sex{\vsm{n}a_n^2}^{1/4} \sex{\vsm{n}n^2a_n^2}^{1/4}, \eex$$ $$\bex \int_0^\infty |f(x)|\rd x \leq\sqrt{\...
605 0
[Everyday Mathematics]20150206
$$\bex \sen{fg}_{L^1}\leq C\sen{f}_{L^{r,\al}}\sen{g}_{L^{r',\al'}}, \eex$$ 其中 $$\bex f\in L^{r,\al},\quad g\in L^{r',\al'},\quad \frac{1}{r}+\frac{1}...
485 0
[Everyday Mathematics]20150205
设 $\phi:[k_0,\infty)\to[0,\infty)$ 是有界递减函数, 并且 $$\bex \phi(k)\leq \sex{\frac{A}{h-k}}^\al\phi(h)^\beta,\quad k>h\geq k_0, \eex$$ 其中 $A,\al>0$, $\beta>1$.
651 0
[Everyday Mathematics]20150129
计算下列积分 $$\bex \int_a^b (x-a)^2(b-x)^3\rd x. \eex$$
506 0