[Everyday Mathematics]20150226

简介: 设 $z\in\bbC$ 适合 $|z+1|>2$. 试证: $$\bex |z^3+1|>1. \eex$$

设 $z\in\bbC$ 适合 $|z+1|>2$. 试证: $$\bex |z^3+1|>1. \eex$$

目录
相关文章
[Everyday Mathematics]20150305
设 $f\in C^2[0,1]$, $$\bex f(0)=-1,\quad f'(1)=3,\quad \int_0^1 xf''(x)\rd x=1. \eex$$ 试求 $f(1)$.   解答: $$\beex \bea 1&=\int_0^1 x\rd f'(x)\\ &=xf'(x...
693 0
[Everyday Mathematics]20150304
证明: $$\bex \frac{2}{\pi}\int_0^\infty \frac{1-\cos 1\cos \lm-\lm \sin 1\sin \lm}{1-\lm^2}\cos \lm x\rd \lm =\sedd{\ba{ll} |\sin x|,&-1
685 0
[Everyday Mathematics]20150218
设 $A,B$ 是 $n$ 阶复方阵, 适合 $$\bex A^2B+BA^2=2ABA. \eex$$ 试证: 存在 $k\in\bbZ^+$, 使得 $(AB-BA)^k=0$.
488 0
[Everyday Mathematics]20150222
设 $$\bex a_0=1,\quad a_1=\frac{1}{2},\quad a_{n+1}=\frac{na_n^2}{1+(n+1)a_n}\ (n\geq 1). \eex$$ 试证: $\dps{\sum_{k=0}^\infty\frac{a_{k+1}}{a_k}}$ 收敛, 并求其值.
697 0
[Everyday Mathematics]20150221
设 $y_n=x_n^2$ 如下归纳定义: $$\bex x_1=\sqrt{5},\quad x_{n+1}=x_n^2-2\ (n=1,2,\cdots). \eex$$ 试求 $\dps{\vlm{n}\frac{x_1x_2\cdots x_n}{x_{n+1}}}$.
602 0
[Everyday Mathematics]20150215
设 $n,k$ 是正整数, 使得 $x^{2k}-x^k+1$ 整除 $x^{2n}+x^n+1$. 试证: $x^{2k}+x^k+1$ 整除 $x^{2n}+x^n+1$.
521 0
|
机器学习/深度学习
[Everyday Mathematics]20150211 Carlson inequality
$$\bex a_n\geq 0\ra \vsm{n}a_n\leq \sqrt{\pi}\sex{\vsm{n}a_n^2}^{1/4} \sex{\vsm{n}n^2a_n^2}^{1/4}, \eex$$ $$\bex \int_0^\infty |f(x)|\rd x \leq\sqrt{\...
605 0
[Everyday Mathematics]20150209
设 $f$ 在区间 $I$ 上三阶可导, $f'\neq 0$, 则可定义 $f$ 的 Schwarz 导数: $$\bex S(f,x)=\frac{f'''(x)}{f'(x)}-\frac{3}{2}\sez{\frac{f''(x)}{f'(x)}}^2 =\sez{\frac{f''(x)...
813 0