内部排序算法:直接选择排序

简介:

基本思想

n个记录的文件的直接选择排序可经过n-1趟直接选择排序得到有序结果:

  1. 初始状态:无序区为R[1..n],有序区为空。
  2. 第1趟排序:在无序区R[1..n]中选出关键字最小的记录R[k],将它与无序区的第1个记录R[1] 交换,使R[1..1]和R[2..n]分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区。
  3. ……
  4. 第i趟排序:第i趟排序开始时,当前有序区和无序区分别为R[1..i-1]和R[i..n](1≤i≤n-1)。 该趟排序从当前无序区中选出关键字最小的记录R[k],将它与无序区的第1个记录R[i]交换,使R[1..i] 和R[i+1..n]分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区。

这样,n个记录的文件的直接选择排序可经过n-1趟直接选择排序得到有序结果。

算法实现

直接选择排序算法,Java实现,代码如下所示:

01 public abstract class Sorter {
02 public abstract void sort(int[] array);
03 }
04
05 public class StraightSelectionSorter extends Sorter {
06
07 @Override
08 public void sort(int[] array) {
09 int tmp; // 用于交换数据的暂存单元
10 for (int i = 0; i < array.length - 1; i++) { // 这里只要从0~array.length-2即可
11 int k = i;
12 for (int j = i + 1; j < array.length; j++) { // 该循环可以找到右侧无序区最小的元素array[k]
13 if (array[k] > array[j]) {
14 k = j;
15 }
16 }
17 if (k != i) { // 如果array[i]不是无序区最小的,需要与无序区最小的进行交换
18 tmp = array[i];
19 array[i] = array[k];
20 array[k] = tmp;
21 }
22 // 如果array[i]是无序区最小的元素,不需要执行交换
23 }
24 }
25 }

直接选择排序算法,Python实现,代码如下所示:

01 class Sorter:
02 '''
03 Abstract sorter class, which provides shared methods being used by
04 subclasses.
05 '''
06 __metaclass__ = ABCMeta
07
08 @abstractmethod
09 def sort(self, array):
10 pass
11
12 class StraightSelectionSort(Sorter):
13 '''
14 Straight selection sorter
15 '''
16 def sort(self, array):
17 i = 0
18 length = len(array)
19 while i<length -1:
20 k = i
21 j = i
22 while j<length:
23 if array[j]<array[k]:
24 k = j
25 j = j + 1
26 if k!=i:
27 array[k], array[i] = array[i], array[k]
28 i = i + 1

排序过程

首先,从0~n-1个元素中找到最小的元素,交换到0位置上;
其次,再从1~n-1中找到次最小的元素,交换到1位置上;
……;
最后从n-2~n-1中找到最小的元素,交换到n-2位置上。n-1位置上一定是最大的元素,所以总共进行n-1趟选择排序。
需要注意的是:
每次确定无序区后,其中除了第一个元素之外的其它元素(设为e)与第一个元素(设为E)比较,只有满足e<E的时候才需要交换一次。

排序过程示例如下:
假设待排序数组为array = {94,12,34,76,26,9,0,37,55,76,37,5,68,83,90,37,12,65,76,49},数组大小为20。

  • 第1趟选择排序

从array[1,n-1]中找到最小的元素:
array[0] = 94>array[1] = 12,交换array[0]与array[1],即array[0] = 12array[2] = 34不成立,不交换;
array[0] = 12>array[3] = 76不成立,不交换;
array[0] = 12>array[4] = 26不成立,不交换;
array[0] = 12>array[5] = 9,交换array[0]与array[5],即array[0] = 9array[6] = 0,交换array[0]与array[6],即array[0] = 0array[7] = 37不成立,不交换;
array[0] = 0>array[8] = 55不成立,不交换;
array[0] = 0>array[9] = 76不成立,不交换;
array[0] = 0>array[10] = 37不成立,不交换;
array[0] = 0>array[11] = 5不成立,不交换;
array[0] = 0>array[12] = 68不成立,不交换;
array[0] = 0>array[13] = 83不成立,不交换;
array[0] = 0>array[14] = 90不成立,不交换;
array[0] = 0>array[15] = 37不成立,不交换;
array[0] = 0>array[16] = 12不成立,不交换;
array[0] = 0>array[17] = 65不成立,不交换;
array[0] = 0>array[18] = 76不成立,不交换;
array[0] = 0>array[19] = 49不成立,不交换。
此时数组状态如下:{0,94,34,76,26,12,9,37,55,76,37,5,68,83,90,37,12,65,76,49}。
此时,有序区为{0},无序区为{94,34,76,26,12,9,37,55,76,37,5,68,83,90,37,12,65,76,49}。

  • 第2趟选择排序

从array[2,n-1]中找到最小的元素:
array[1] = 94>array[2] = 34,交换array[1]与array[2],即array[1] = 34array[3] = 76不成立,不交换;
array[1] = 34>array[4] = 26,交换array[1]与array[4],即array[1] = 26array[5] = 12,交换array[1]与array[5],即array[1] = 12array[6] = 9,交换array[1]与array[6],即array[1] = 9array[7] = 37不成立,不交换;
array[1] = 0>array[8] = 55不成立,不交换;
array[1] = 0>array[9] = 76不成立,不交换;
array[1] = 0>array[10] = 37不成立,不交换;
array[1] = 9>array[11] = 5,交换array[1]与array[11],即array[1] = 5array[12] = 68不成立,不交换;
array[1] = 5>array[13] = 83不成立,不交换;
array[1] = 5>array[14] = 90不成立,不交换;
array[1] = 5>array[15] = 37不成立,不交换;
array[1] = 5>array[16] = 12不成立,不交换;
array[1] = 5>array[17] = 65不成立,不交换;
array[1] = 5>array[18] = 76不成立,不交换;
array[1] = 5>array[19] = 49不成立,不交换。
此时数组状态如下:{0,5,94,76,34,26,12,37,55,76,37,9,68,83,90,37,12,65,76,49}。
此时,有序区为{0,5},无序区为{94,76,34,26,12,37,55,76,37,9,68,83,90,37,12,65,76,49}。

  • 第3趟选择排序

排序后数组状态为:{0,5,9,94,76,34,26,37,55,76,37,12,68,83,90,37,12,65,76,49}。
此时,有序区为{0,5,9},无序区为{94,76,34,26,37,55,76,37,12,68,83,90,37,12,65,76,49}。

  • 第4趟选择排序

排序后数组状态变化:
{0,5,9,76,94,34,26,37,55,76,37,12,68,83,90,37,12,65,76,49},
{0,5,9,34,94,76,26,37,55,76,37,12,68,83,90,37,12,65,76,49},
{0,5,9,26,94,76,34,37,55,76,37,12,68,83,90,37,12,65,76,49},
{0,5,9,12,94,76,34,37,55,76,37,26,68,83,90,37,12,65,76,49},
{0,5,9,12,94,76,34,37,55,76,37,26,68,83,90,37,12,65,76,49},
此时,有序区为{0,5,9,12},无序区为{94,76,34,37,55,76,37,26,68,83,90,37,12,65,76,49}。
……

  • 第n-1趟选择排序

依此类推,执行n-1趟选择排序,最后得到:有序区为{0,5,9,12,12,26,34,37,37,37,49,55,65,68,76,76,76,83,90},无序区为{94},此时整个数组已经有序,n-1趟选择排序后,排序完成。

算法分析

  • 时间复杂度
  1. 记录比较次数:

无论待排序数组初始状态如何,都要进行n-1趟选择排序:

  • 第1趟:比较n-1次;
  • 第2趟:比较n-2次;
  • ……
  • 第n-1趟:比较1次。

从而,总共的比较次数为:1+2+……+(n-1) = n(n-1)/2

记录移动次数:

如果待排序数组为正序,则记录不需要交换,记录移动次数为0;
如果当排序数组为逆序,则:

  • 第1趟:交换1次,移动3次;
  • 第2趟:交换1次,移动3次;
  • ……
  • 第n-1趟:交换1次,移动3次。

从而,总共的移动次数为:3(n-1) = 3(n-1)。
因此,时间复杂度为O(n2)。

  • 空间复杂度

在选择排序的过程中,设置一个变量用来交换元素,所以空间复杂度为O(1)。

排序稳定性

选择排序是就地排序。
通过上面的排序过程中数组的状态变化可以看出:直接选择排序是不稳定的。

目录
相关文章
|
3月前
|
算法 搜索推荐
数据结构与算法学习十一:冒泡排序、选择排序、插入排序
本文介绍了冒泡排序、选择排序和插入排序三种基础排序算法的原理、实现代码和测试结果。
28 0
数据结构与算法学习十一:冒泡排序、选择排序、插入排序
|
3月前
|
搜索推荐 Java Go
深入了解选择排序算法
深入了解选择排序算法
34 4
|
3月前
|
搜索推荐 算法
【排序算法(一)】——插入排序,选择排序 —> 深层解析
【排序算法(一)】——插入排序,选择排序 —> 深层解析
|
3月前
|
算法 Python
Python算法编程:冒泡排序、选择排序、快速排序
Python算法编程:冒泡排序、选择排序、快速排序
41 0
|
5月前
|
搜索推荐 算法 Java
经典排序算法之-----选择排序(Java实现)
这篇文章通过Java代码示例详细解释了选择排序算法的实现过程,包括算法的基本思想、核心代码、辅助函数以及测试结果,展示了如何通过选择排序对数组进行升序排列。
经典排序算法之-----选择排序(Java实现)
|
7月前
|
机器学习/深度学习 算法 搜索推荐
数据结构算法--2 冒泡排序,选择排序,插入排序
**基础排序算法包括冒泡排序、选择排序和插入排序。冒泡排序通过相邻元素比较交换,逐步将最大值“冒”到末尾,平均时间复杂度为O(n^2)。选择排序每次找到剩余部分的最小值与未排序部分的第一个元素交换,同样具有O(n^2)的时间复杂度。插入排序则类似玩牌,将新元素插入到已排序部分的正确位置,也是O(n^2)复杂度。这些算法适用于小规模或部分有序的数据。**
|
7月前
|
搜索推荐
排序算法---选择排序-----详解&&代码
排序算法---选择排序-----详解&&代码
|
7月前
|
算法 搜索推荐
数据结构与算法-选择排序
数据结构与算法-选择排序
38 4
|
7月前
|
搜索推荐 算法
【C/排序算法】:堆排序和选择排序
【C/排序算法】:堆排序和选择排序
44 0
|
7月前
|
算法 搜索推荐 Java
JavaSE——算法(1/2):认识、冒泡排序、选择排序及优化(介绍、详细图解、代码)
JavaSE——算法(1/2):认识、冒泡排序、选择排序及优化(介绍、详细图解、代码)
51 0

热门文章

最新文章