[python] 使用Jieba工具中文分词及文本聚类概念

简介:

        前面讲述了很多关于Python爬取本体Ontology、消息盒InfoBox、虎扑图片等例子,同时讲述了VSM向量空间模型的应用。但是由于InfoBox没有前后文和语义概念,所以效果不是很好,这篇文章主要是爬取百度5A景区摘要信息,再利用Jieba分词工具进行中文分词,最后提出文本聚类算法的一些概念知识。
        相关文章:
        [Python爬虫] Selenium获取百度百科旅游景点的InfoBox消息盒
        [python爬虫] Selenium定向爬取海量精美图片及搜索引擎杂谈
        Python简单实现基于VSM的余弦相似度计算
        基于VSM的命名实体识别、歧义消解和指代消解
        [python爬虫] Selenium定向爬取PubMed生物医学摘要信息


一. Selenium爬取百度百科摘要

        简单给出Selenium爬取百度百科5A级景区的代码:

# coding=utf-8  
""" 
Created on 2015-12-10 @author: Eastmount  
"""  
  
import time          
import re          
import os  
import sys
import codecs
import shutil
from selenium import webdriver      
from selenium.webdriver.common.keys import Keys      
import selenium.webdriver.support.ui as ui      
from selenium.webdriver.common.action_chains import ActionChains  
  
#Open PhantomJS  
driver = webdriver.PhantomJS(executable_path="G:\phantomjs-1.9.1-windows\phantomjs.exe")  
#driver = webdriver.Firefox()  
wait = ui.WebDriverWait(driver,10)

#Get the Content of 5A tourist spots  
def getInfobox(entityName, fileName):  
    try:  
        #create paths and txt files
        print u'文件名称: ', fileName
        info = codecs.open(fileName, 'w', 'utf-8')  

        #locate input  notice: 1.visit url by unicode 2.write files
        #Error: Message: Element not found in the cache -
        #       Perhaps the page has changed since it was looked up
        #解决方法: 使用Selenium和Phantomjs
        print u'实体名称: ', entityName.rstrip('\n') 
        driver.get("http://baike.baidu.com/")  
        elem_inp = driver.find_element_by_xpath("//form[@id='searchForm']/input")  
        elem_inp.send_keys(entityName)  
        elem_inp.send_keys(Keys.RETURN)  
        info.write(entityName.rstrip('\n')+'\r\n')  #codecs不支持'\n'换行  
  
        #load content 摘要
        elem_value = driver.find_elements_by_xpath("//div[@class='lemma-summary']/div")
        for value in elem_value:
            print value.text
            info.writelines(value.text + '\r\n')

        #爬取文本信息
        #爬取所有段落<div class='para'>的内容 class='para-title'为标题 [省略]
        time.sleep(2)  
          
    except Exception,e:    #'utf8' codec can't decode byte  
        print "Error: ",e  
    finally:  
        print '\n'  
        info.close() 
  
#Main function  
def main():
    #By function get information
    path = "BaiduSpider\\"
    if os.path.isdir(path):
        shutil.rmtree(path, True)
    os.makedirs(path)
    source = open("Tourist_spots_5A_BD.txt", 'r')
    num = 1
    for entityName in source:  
        entityName = unicode(entityName, "utf-8")  
        if u'故宫' in entityName:   #else add a '?'  
            entityName = u'北京故宫'
        name = "%04d" % num
        fileName = path + str(name) + ".txt"
        getInfobox(entityName, fileName)
        num = num + 1
    print 'End Read Files!'  
    source.close()  
    driver.close()
    
if __name__ == '__main__':
    main()  
        内容如下图所示,共204个国家5A级景点的摘要信息。这里就不再叙述:


二. Jieba中文分词

        Python中分分词工具很多,包括盘古分词、Yaha分词、Jieba分词等。
        中文分词库:http://www.oschina.net/project/tag/264/segment
        其中它们的基本用法都相差不大,但是Yaha分词不能处理如“黄琉璃瓦顶”或“圜丘坛”等词,所以使用了结巴分词。

        1.安装及入门介绍
        参考地址:http://www.oschina.net/p/jieba
        下载地址:https://pypi.python.org/pypi/jieba/
        Python 2.0我推荐使用"pip install jieba"或"easy_install jieba"全自动安装,再通过import jieba来引用(第一次import时需要构建Trie树,需要等待几秒时间)。
        安装时如果出现错误"unknown encoding: cp65001",输入"chcp 936"将编码方式由utf-8变为简体中文gbk。


        结巴中文分词涉及到的算法包括:
        (1) 基于Trie树结构实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图(DAG);
        (2) 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合;
        (3) 对于未登录词,采用了基于汉字成词能力的HMM模型,使用了Viterbi算法。

        结巴中文分词支持的三种分词模式包括:
        (1) 精确模式:试图将句子最精确地切开,适合文本分析;
        (2) 全模式:把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义问题;
        (3) 搜索引擎模式:在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。
        同时结巴分词支持繁体分词和自定义字典方法。
#encoding=utf-8
import jieba

#全模式
text = "我来到北京清华大学"
seg_list = jieba.cut(text, cut_all=True)
print u"[全模式]: ", "/ ".join(seg_list) 

#精确模式
seg_list = jieba.cut(text, cut_all=False)
print u"[精确模式]: ", "/ ".join(seg_list)

#默认是精确模式
seg_list = jieba.cut(text)
print u"[默认模式]: ", "/ ".join(seg_list) 

#新词识别 “杭研”并没有在词典中,但是也被Viterbi算法识别出来了
seg_list = jieba.cut("他来到了网易杭研大厦") 
print u"[新词识别]: ", "/ ".join(seg_list)

#搜索引擎模式
seg_list = jieba.cut_for_search(text) 
print u"[搜索引擎模式]: ", "/ ".join(seg_list)
        输出如下图所示:
        代码中函数简单介绍如下:
        jieba.cut():第一个参数为需要分词的字符串,第二个cut_all控制是否为全模式。
        jieba.cut_for_search():仅一个参数,为分词的字符串,该方法适合用于搜索引擎构造倒排索引的分词,粒度比较细。
        其中待分词的字符串支持gbk\utf-8\unicode格式。返回的结果是一个可迭代的generator,可使用for循环来获取分词后的每个词语,更推荐使用转换为list列表。

        2.添加自定义词典
        由于"国家5A级景区"存在很多旅游相关的专有名词,举个例子:
   [输入文本] 故宫的著名景点包括乾清宫、太和殿和黄琉璃瓦等
   [精确模式] 故宫/的/著名景点/包括/乾/清宫/、/太和殿/和/黄/琉璃瓦/
   [全 模 式] 故宫/的/著名/著名景点/景点/包括/乾/清宫/太和/太和殿/和/黄/琉璃/琉璃瓦/等

        显然,专有名词"乾清宫"、"太和殿"、"黄琉璃瓦"(假设为一个文物)可能因分词而分开,这也是很多分词工具的又一个缺陷。但是Jieba分词支持开发者使用自定定义的词典,以便包含jieba词库里没有的词语。虽然结巴有新词识别能力,但自行添加新词可以保证更高的正确率,尤其是专有名词。
        基本用法:jieba.load_userdict(file_name) #file_name为自定义词典的路径
        词典格式和dict.txt一样,一个词占一行;每一行分三部分,一部分为词语,另一部分为词频,最后为词性(可省略,ns为地点名词),用空格隔开。
        强烈推荐一篇词性标注文章,链接如下:
        http://www.hankcs.com/nlp/part-of-speech-tagging.html
#encoding=utf-8
import jieba

#导入自定义词典
jieba.load_userdict("dict.txt")

#全模式
text = "故宫的著名景点包括乾清宫、太和殿和黄琉璃瓦等"
seg_list = jieba.cut(text, cut_all=True)
print u"[全模式]: ", "/ ".join(seg_list) 

#精确模式
seg_list = jieba.cut(text, cut_all=False)
print u"[精确模式]: ", "/ ".join(seg_list)

#搜索引擎模式
seg_list = jieba.cut_for_search(text) 
print u"[搜索引擎模式]: ", "/ ".join(seg_list)
        输出结果如下所示,其中专有名词连在一起,即"乾清宫"和"黄琉璃瓦"。

        3.关键词提取
        在构建VSM向量空间模型过程或者把文本转换成数学形式计算中,你需要运用到关键词提取的技术,这里就再补充该内容,而其他的如词性标注、并行分词、获取词位置和搜索引擎就不再叙述了。
        基本方法:jieba.analyse.extract_tags(sentence, topK) 
        需要先import jieba.analyse,其中sentence为待提取的文本,topK为返回几个TF/IDF权重最大的关键词,默认值为20。
#encoding=utf-8
import jieba
import jieba.analyse

#导入自定义词典
jieba.load_userdict("dict.txt")

#精确模式
text = "故宫的著名景点包括乾清宫、太和殿和午门等。其中乾清宫非常精美,午门是紫禁城的正门,午门居中向阳。"
seg_list = jieba.cut(text, cut_all=False)
print u"分词结果:"
print "/".join(seg_list)

#获取关键词
tags = jieba.analyse.extract_tags(text, topK=3)
print u"关键词:"
print " ".join(tags)
        输出结果如下,其中"午门"出现3次、"乾清宫"出现2次、"著名景点"出现1次,按照顺序输出提取的关键词。如果topK=5,则输出:"午门 乾清宫 著名景点 太和殿 向阳"。
>>> 
分词结果:
故宫/的/著名景点/包括/乾清宫/、/太和殿/和/午门/等/。/其中/乾清宫/非常/精美/,/午门/是/紫禁城/的/正门/,/午门/居中/向阳/。
关键词:
午门 乾清宫 著名景点
>>> 

        4.对百度百科获取摘要分词
        从BaiduSpider文件中读取0001.txt~0204.txt文件,分别进行分词处理再保存。
#encoding=utf-8
import sys
import re
import codecs
import os
import shutil
import jieba
import jieba.analyse

#导入自定义词典
jieba.load_userdict("dict_baidu.txt")

#Read file and cut
def read_file_cut():
    #create path
    path = "BaiduSpider\\"
    respath = "BaiduSpider_Result\\"
    if os.path.isdir(respath):
        shutil.rmtree(respath, True)
    os.makedirs(respath)

    num = 1
    while num<=204:
        name = "%04d" % num 
        fileName = path + str(name) + ".txt"
        resName = respath + str(name) + ".txt"
        source = open(fileName, 'r')
        if os.path.exists(resName):
            os.remove(resName)
        result = codecs.open(resName, 'w', 'utf-8')
        line = source.readline()
        line = line.rstrip('\n')
        
        while line!="":
            line = unicode(line, "utf-8")
            seglist = jieba.cut(line,cut_all=False)  #精确模式
            output = ' '.join(list(seglist))         #空格拼接
            print output
            result.write(output + '\r\n')
            line = source.readline()
        else:
            print 'End file: ' + str(num)
            source.close()
            result.close()
        num = num + 1
    else:
        print 'End All'

#Run function
if __name__ == '__main__':
    read_file_cut()
        运行结果如下图所示:

        5.去除停用词
        在信息检索中,为节省存储空间和提高搜索效率,在处理自然语言数据(或文本)之前或之后会自动过滤掉某些字或词,这些字或词即被称为Stop Words(停用词)。这些停用词都是人工输入、非自动化生成的,生成后的停用词会形成一个停用词表。但是,并没有一个明确的停用词表能够适用于所有的工具。甚至有一些工具是明确地避免使用停用词来支持短语搜索的。[参考百度百科]
#encoding=utf-8
import jieba

#去除停用词
stopwords = {}.fromkeys(['的', '包括', '等', '是'])
text = "故宫的著名景点包括乾清宫、太和殿和午门等。其中乾清宫非常精美,午门是紫禁城的正门。"
segs = jieba.cut(text, cut_all=False)
final = ''
for seg in segs:
    seg = seg.encode('utf-8')
    if seg not in stopwords:
            final += seg
print final
#输出:故宫著名景点乾清宫、太和殿和午门。其中乾清宫非常精美,午门紫禁城正门。

seg_list = jieba.cut(final, cut_all=False)
print "/ ".join(seg_list)
#输出:故宫/ 著名景点/ 乾清宫/ 、/ 太和殿/ 和/ 午门/ 。/ 其中/ 乾清宫/ 非常/ 精美/ ,/ 午门/ 紫禁城/ 正门/ 。

三. 基于VSM的文本聚类算法

        这部分主要参考2008年上海交通大学姚清坛等《基于向量空间模型的文本聚类算法》的论文,因为我的实体对齐使用InfoBox存在很多问题,发现对齐中会用到文本内容及聚类算法,所以简单讲述下文章一些知识。


        文本聚类的主要依据聚类假设是:同类的文档相似度较大,而非同类文档相似度较小。同时使用无监督学习方法,聚类不需要训练过程以及不需要预先对文档手工标注类别,因此具有较高的灵活性和自动化处理能力。主要分为以下部分:
        (1) 预处理常用方法
        文本信息预处理(词性标注、语义标注),构建统计词典,对文本进行词条切分,完成文本信息的分词过程。
        (2) 文本信息的特征表示
        采用方法包括布尔逻辑型、概率型、混合型和向量空间模型。其中向量空间模型VSM(Vector Space Model)是将文档映射成向量的形式,(T1, T2, ..., Tn)表示文档词条,(W1, W2, ..., Wn)文档词条对应权重。建立文本特征主要用特征项或词条来表示目标文本信息,构造评价函数来表示词条权重,尽最大限度区别不同的文档。
        (3) 文本信息特征缩减
        VSM文档特征向量维数众多。因此,在文本进行聚类之前,应用文本信息特征集进行缩减,针对每个特征词的权重排序,选取最佳特征,包括TF-IDF。推荐向量稀疏表示方法,提升聚类的效果,其中(D1, D2, ..., Dn)表示权重不为0的特征词条。
        (4) 文本聚类
        文本内容表示成数学课分析形势后,接下来就是在此数学基础上进行文本聚类。包括基于概率方法和基于距离方法。其中基于概率是利用贝叶斯概率理论,概率分布方式;基于聚类是特征向量表示文档(文档看成一个点),通过计算点之间的距离,包括层次聚类法和平面划分法。

       后面我可能也会写具体的Python聚类算法,VSM计算相似度我前面已经讲过。同时,他的实验数据是搜狐中心的10个大类,包括汽车、财经、IT、体育等,而我的数据都是旅游,如何进一步聚类划分,如山川、河流、博物馆等等,这是另一个难点。
        最后还是那句话:不论如何,希望文章对你有所帮助,如果文章中有错误或不足之处,还请海涵~写文不易,且看且分析。加油!!!
      (By:Eastmount 2015-12-11 深夜3点   http://blog.csdn.net/eastmount/ 

目录
相关文章
|
30天前
|
数据可视化 编译器 Python
Manim:数学可视化的强大工具 | python小知识
Manim(Manim Community Edition)是由3Blue1Brown的Grant Sanderson开发的数学动画引擎,专为数学和科学可视化设计。它结合了Python的灵活性与LaTeX的精确性,支持多领域的内容展示,能生成清晰、精确的数学动画,广泛应用于教育视频制作。安装简单,入门容易,适合教育工作者和编程爱好者使用。
226 7
|
2月前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
73 8
|
2月前
|
JavaScript 前端开发 开发者
探索 DrissionPage: 强大的Python网页自动化工具
DrissionPage 是一个基于 Python 的网页自动化工具,结合了浏览器自动化的便利性和 requests 库的高效率。它提供三种页面对象:ChromiumPage、WebPage 和 SessionPage,分别适用于不同的使用场景,帮助开发者高效完成网页自动化任务。
204 4
|
2月前
|
开发者 Python
探索Python中的列表推导式:简洁而强大的工具
【10月更文挑战第41天】 在编程的世界中,效率与简洁是永恒的追求。本文将深入探讨Python编程语言中一个独特且强大的特性——列表推导式(List Comprehension)。我们将通过实际代码示例,展示如何利用这一工具简化代码、提升性能,并解决常见编程问题。无论你是初学者还是资深开发者,掌握列表推导式都将使你的Python之旅更加顺畅。
|
2月前
|
机器学习/深度学习 自然语言处理 API
如何使用阿里云的语音合成服务(TTS)将文本转换为语音?本文详细介绍了从注册账号、获取密钥到编写Python代码调用TTS服务的全过程
如何使用阿里云的语音合成服务(TTS)将文本转换为语音?本文详细介绍了从注册账号、获取密钥到编写Python代码调用TTS服务的全过程。通过简单的代码示例,展示如何将文本转换为自然流畅的语音,适用于有声阅读、智能客服等场景。
384 3
|
3月前
|
数据采集 数据可视化 数据挖掘
R语言与Python:比较两种数据分析工具
R语言和Python是目前最流行的两种数据分析工具。本文将对这两种工具进行比较,包括它们的历史、特点、应用场景、社区支持、学习资源、性能等方面,以帮助读者更好地了解和选择适合自己的数据分析工具。
64 2
|
3月前
|
C语言 开发者 Python
探索Python中的列表推导式:简洁而强大的工具
【10月更文挑战第21天】在Python的世界里,代码的优雅与效率同样重要。列表推导式(List Comprehensions)作为一种强大而简洁的工具,允许开发者通过一行代码完成对列表的复杂操作。本文将深入探讨列表推导式的使用方法、性能考量以及它如何提升代码的可读性和效率。
|
3月前
|
自然语言处理 算法 数据挖掘
探讨如何利用Python中的NLP工具,从被动收集到主动分析文本数据的过程
【10月更文挑战第11天】本文介绍了自然语言处理(NLP)在文本分析中的应用,从被动收集到主动分析的过程。通过Python代码示例,详细展示了文本预处理、特征提取、情感分析和主题建模等关键技术,帮助读者理解如何有效利用NLP工具进行文本数据分析。
66 2
|
2月前
|
C语言 Python
探索Python中的列表推导式:简洁而强大的工具
【10月更文挑战第24天】在Python编程的世界中,追求代码的简洁性和可读性是永恒的主题。列表推导式(List Comprehensions)作为Python语言的一个特色功能,提供了一种优雅且高效的方法来创建和处理列表。本文将深入探讨列表推导式的使用场景、语法结构以及如何通过它简化日常编程任务。
|
3月前
|
机器学习/深度学习 Unix 开发者
python的环境管理工具有哪些
python的环境管理工具有哪些
44 0