推荐大家看论文《An adaptive color-based particle filter》
这次我直接截图我的硕士毕业论文的第二章的一部分,应该讲得比较详细了。最后给出我当时在pudn找到的最适合学习的实现代码
代码实现:
运行方式:按P停止,在前景窗口鼠标点击目标,会自动生成外接矩形,再次按P,对该选定目标进行跟踪。
// TwoLevel.cpp : 定义控制台应用程序的入口点。 // /************************************************************************/ /*参考文献real-time Multiple Objects Tracking with Occlusion Handling in Dynamic Scenes */ /************************************************************************/ #include "stdafx.h" #include <cv.h> #include <cxcore.h> #include <highgui.h> #include <math.h> # include <time.h> #include <iostream> using namespace std; #define B(image,x,y) ((uchar*)(image->imageData + image->widthStep*(y)))[(x)*3] //B #define G(image,x,y) ((uchar*)(image->imageData + image->widthStep*(y)))[(x)*3+1] //G #define R(image,x,y) ((uchar*)(image->imageData + image->widthStep*(y)))[(x)*3+2] //R #define S(image,x,y) ((uchar*)(image->imageData + image->widthStep*(y)))[(x)] #define Num 10 //帧差的间隔 #define T 40 //Tf #define Re 30 // #define ai 0.08 //学习率 #define CONTOUR_MAX_AREA 10000 #define CONTOUR_MIN_AREA 50 # define R_BIN 8 /* 红色分量的直方图条数 */ # define G_BIN 8 /* 绿色分量的直方图条数 */ # define B_BIN 8 /* 兰色分量的直方图条数 */ # define R_SHIFT 5 /* 与上述直方图条数对应 */ # define G_SHIFT 5 /* 的R、G、B分量左移位数 */ # define B_SHIFT 5 /* log2( 256/8 )为移动位数 */ /* 采用Park and Miller方法产生[0,1]之间均匀分布的伪随机数 算法详细描述见: [1] NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING. Cambridge University Press. 1992. pp.278-279. [2] Park, S.K., and Miller, K.W. 1988, Communications of the ACM, vol. 31, pp. 1192–1201. */ #define IA 16807 #define IM 2147483647 #define AM (1.0/IM) #define IQ 127773 #define IR 2836 #define MASK 123459876 typedef struct __SpaceState { /* 状态空间变量 */ int xt; /* x坐标位置 */ int yt; /* x坐标位置 */ float v_xt; /* x方向运动速度 */ float v_yt; /* y方向运动速度 */ int Hxt; /* x方向半窗宽 */ int Hyt; /* y方向半窗宽 */ float at_dot; /* 尺度变换速度 */ } SPACESTATE; bool pause=false;//是否暂停 bool track = false;//是否跟踪 IplImage *curframe=NULL; IplImage *pBackImg=NULL; IplImage *pFrontImg=NULL; IplImage *pTrackImg =NULL; unsigned char * img;//把iplimg改到char* 便于计算 int xin,yin;//跟踪时输入的中心点 int xout,yout;//跟踪时得到的输出中心点 int Wid,Hei;//图像的大小 int WidIn,HeiIn;//输入的半宽与半高 int WidOut,HeiOut;//输出的半宽与半高 long ran_seed = 802163120; /* 随机数种子,为全局变量,设置缺省值 */ float DELTA_T = (float)0.05; /* 帧频,可以为30,25,15,10等 */ int POSITION_DISTURB = 15; /* 位置扰动幅度 */ float VELOCITY_DISTURB = 40.0; /* 速度扰动幅值 */ float SCALE_DISTURB = 0.0; /* 窗宽高扰动幅度 */ float SCALE_CHANGE_D = (float)0.001; /* 尺度变换速度扰动幅度 */ int NParticle = 75; /* 粒子个数 */ float * ModelHist = NULL; /* 模型直方图 */ SPACESTATE * states = NULL; /* 状态数组 */ float * weights = NULL; /* 每个粒子的权重 */ int nbin; /* 直方图条数 */ float Pi_Thres = (float)0.90; /* 权重阈值 */ float Weight_Thres = (float)0.0001; /* 最大权重阈值,用来判断是否目标丢失 */ /* 设置种子数 一般利用系统时间来进行设置,也可以直接传入一个long型整数 */ long set_seed( long setvalue ) { if ( setvalue != 0 ) /* 如果传入的参数setvalue!=0,设置该数为种子 */ ran_seed = setvalue; else /* 否则,利用系统时间为种子数 */ { ran_seed = time(NULL); } return( ran_seed ); } /* 计算一幅图像中某个区域的彩色直方图分布 输入参数: int x0, y0: 指定图像区域的中心点 int Wx, Hy: 指定图像区域的半宽和半高 unsigned char * image:图像数据,按从左至右,从上至下的顺序扫描, 颜色排列次序:RGB, RGB, ... (或者:YUV, YUV, ...) int W, H: 图像的宽和高 输出参数: float * ColorHist: 彩色直方图,颜色索引按: i = r * G_BIN * B_BIN + g * B_BIN + b排列 int bins: 彩色直方图的条数R_BIN*G_BIN*B_BIN(这里取8x8x8=512) */ void CalcuColorHistogram( int x0, int y0, int Wx, int Hy, unsigned char * image, int W, int H, float * ColorHist, int bins ) { int x_begin, y_begin; /* 指定图像区域的左上角坐标 */ int y_end, x_end; int x, y, i, index; int r, g, b; float k, r2, f; int a2; for ( i = 0; i < bins; i++ ) /* 直方图各个值赋0 */ ColorHist[i] = 0.0; /* 考虑特殊情况:x0, y0在图像外面,或者,Wx<=0, Hy<=0 */ /* 此时强制令彩色直方图为0 */ if ( ( x0 < 0 ) || (x0 >= W) || ( y0 < 0 ) || ( y0 >= H ) || ( Wx <= 0 ) || ( Hy <= 0 ) ) return; x_begin = x0 - Wx; /* 计算实际高宽和区域起始点 */ y_begin = y0 - Hy; if ( x_begin < 0 ) x_begin = 0; if ( y_begin < 0 ) y_begin = 0; x_end = x0 + Wx; y_end = y0 + Hy; if ( x_end >= W ) x_end = W-1; if ( y_end >= H ) y_end = H-1; a2 = Wx*Wx+Hy*Hy; /* 计算核函数半径平方a^2 */ f = 0.0; /* 归一化系数 */ for ( y = y_begin; y <= y_end; y++ ) for ( x = x_begin; x <= x_end; x++ ) { r = image[(y*W+x)*3] >> R_SHIFT; /* 计算直方图 */ g = image[(y*W+x)*3+1] >> G_SHIFT; /*移位位数根据R、G、B条数 */ b = image[(y*W+x)*3+2] >> B_SHIFT; index = r * G_BIN * B_BIN + g * B_BIN + b; r2 = (float)(((y-y0)*(y-y0)+(x-x0)*(x-x0))*1.0/a2); /* 计算半径平方r^2 */ k = 1 - r2; /* 核函数k(r) = 1-r^2, |r| < 1; 其他值 k(r) = 0 */ f = f + k; ColorHist[index] = ColorHist[index] + k; /* 计算核密度加权彩色直方图 */ } for ( i = 0; i < bins; i++ ) /* 归一化直方图 */ ColorHist[i] = ColorHist[i]/f; return; } /* 计算Bhattacharyya系数 输入参数: float * p, * q: 两个彩色直方图密度估计 int bins: 直方图条数 返回值: Bhattacharyya系数 */ float CalcuBhattacharyya( float * p, float * q, int bins ) { int i; float rho; rho = 0.0; for ( i = 0; i < bins; i++ ) rho = (float)(rho + sqrt( p[i]*q[i] )); return( rho ); } /*# define RECIP_SIGMA 3.98942280401 / * 1/(sqrt(2*pi)*sigma), 这里sigma = 0.1 * /*/ # define SIGMA2 0.02 /* 2*sigma^2, 这里sigma = 0.1 */ float CalcuWeightedPi( float rho ) { float pi_n, d2; d2 = 1 - rho; //pi_n = (float)(RECIP_SIGMA * exp( - d2/SIGMA2 )); pi_n = (float)(exp( - d2/SIGMA2 )); return( pi_n ); } /* 采用Park and Miller方法产生[0,1]之间均匀分布的伪随机数 算法详细描述见: [1] NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING. Cambridge University Press. 1992. pp.278-279. [2] Park, S.K., and Miller, K.W. 1988, Communications of the ACM, vol. 31, pp. 1192–1201. */ float ran0(long *idum) { long k; float ans; /* *idum ^= MASK;*/ /* XORing with MASK allows use of zero and other */ k=(*idum)/IQ; /* simple bit patterns for idum. */ *idum=IA*(*idum-k*IQ)-IR*k; /* Compute idum=(IA*idum) % IM without over- */ if (*idum < 0) *idum += IM; /* flows by Schrage’s method. */ ans=AM*(*idum); /* Convert idum to a floating result. */ /* *idum ^= MASK;*/ /* Unmask before return. */ return ans; } /* 获得一个[0,1]之间均匀分布的随机数 */ float rand0_1() { return( ran0( &ran_seed ) ); } /* 获得一个x - N(u,sigma)Gaussian分布的随机数 */ float randGaussian( float u, float sigma ) { float x1, x2, v1, v2; float s = 100.0; float y; /* 使用筛选法产生正态分布N(0,1)的随机数(Box-Mulles方法) 1. 产生[0,1]上均匀随机变量X1,X2 2. 计算V1=2*X1-1,V2=2*X2-1,s=V1^2+V2^2 3. 若s<=1,转向步骤4,否则转1 4. 计算A=(-2ln(s)/s)^(1/2),y1=V1*A, y2=V2*A y1,y2为N(0,1)随机变量 */ while ( s > 1.0 ) { x1 = rand0_1(); x2 = rand0_1(); v1 = 2 * x1 - 1; v2 = 2 * x2 - 1; s = v1*v1 + v2*v2; } y = (float)(sqrt( -2.0 * log(s)/s ) * v1); /* 根据公式 z = sigma * y + u 将y变量转换成N(u,sigma)分布 */ return( sigma * y + u ); } /* 初始化系统 int x0, y0: 初始给定的图像目标区域坐标 int Wx, Hy: 目标的半宽高 unsigned char * img:图像数据,RGB形式 int W, H: 图像宽高 */ int Initialize( int x0, int y0, int Wx, int Hy, unsigned char * img, int W, int H ) { int i, j; float rn[7]; set_seed( 0 ); /* 使用系统时钟作为种子,这个函数在 */ /* 系统初始化时候要调用一次,且仅调用1次 */ //NParticle = 75; /* 采样粒子个数 */ //Pi_Thres = (float)0.90; /* 设置权重阈值 */ states = new SPACESTATE [NParticle]; /* 申请状态数组的空间 */ if ( states == NULL ) return( -2 ); weights = new float [NParticle]; /* 申请粒子权重数组的空间 */ if ( weights == NULL ) return( -3 ); nbin = R_BIN * G_BIN * B_BIN; /* 确定直方图条数 */ ModelHist = new float [nbin]; /* 申请直方图内存 */ if ( ModelHist == NULL ) return( -1 ); /* 计算目标模板直方图 */ CalcuColorHistogram( x0, y0, Wx, Hy, img, W, H, ModelHist, nbin ); /* 初始化粒子状态(以(x0,y0,1,1,Wx,Hy,0.1)为中心呈N(0,0.4)正态分布) */ states[0].xt = x0; states[0].yt = y0; states[0].v_xt = (float)0.0; // 1.0 states[0].v_yt = (float)0.0; // 1.0 states[0].Hxt = Wx; states[0].Hyt = Hy; states[0].at_dot = (float)0.0; // 0.1 weights[0] = (float)(1.0/NParticle); /* 0.9; */ for ( i = 1; i < NParticle; i++ ) { for ( j = 0; j < 7; j++ ) rn[j] = randGaussian( 0, (float)0.6 ); /* 产生7个随机高斯分布的数 */ states[i].xt = (int)( states[0].xt + rn[0] * Wx ); states[i].yt = (int)( states[0].yt + rn[1] * Hy ); states[i].v_xt = (float)( states[0].v_xt + rn[2] * VELOCITY_DISTURB ); states[i].v_yt = (float)( states[0].v_yt + rn[3] * VELOCITY_DISTURB ); states[i].Hxt = (int)( states[0].Hxt + rn[4] * SCALE_DISTURB ); states[i].Hyt = (int)( states[0].Hyt + rn[5] * SCALE_DISTURB ); states[i].at_dot = (float)( states[0].at_dot + rn[6] * SCALE_CHANGE_D ); /* 权重统一为1/N,让每个粒子有相等的机会 */ weights[i] = (float)(1.0/NParticle); } return( 1 ); } /* 计算归一化累计概率c'_i 输入参数: float * weight: 为一个有N个权重(概率)的数组 int N: 数组元素个数 输出参数: float * cumulateWeight: 为一个有N+1个累计权重的数组, cumulateWeight[0] = 0; */ void NormalizeCumulatedWeight( float * weight, float * cumulateWeight, int N ) { int i; for ( i = 0; i < N+1; i++ ) cumulateWeight[i] = 0; for ( i = 0; i < N; i++ ) cumulateWeight[i+1] = cumulateWeight[i] + weight[i]; for ( i = 0; i < N+1; i++ ) cumulateWeight[i] = cumulateWeight[i]/ cumulateWeight[N]; return; } /* 折半查找,在数组NCumuWeight[N]中寻找一个最小的j,使得 NCumuWeight[j] <=v float v: 一个给定的随机数 float * NCumuWeight: 权重数组 int N: 数组维数 返回值: 数组下标序号 */ int BinearySearch( float v, float * NCumuWeight, int N ) { int l, r, m; l = 0; r = N-1; /* extreme left and extreme right components' indexes */ while ( r >= l) { m = (l+r)/2; if ( v >= NCumuWeight[m] && v < NCumuWeight[m+1] ) return( m ); if ( v < NCumuWeight[m] ) r = m - 1; else l = m + 1; } return( 0 ); } /* 重新进行重要性采样 输入参数: float * c: 对应样本权重数组pi(n) int N: 权重数组、重采样索引数组元素个数 输出参数: int * ResampleIndex:重采样索引数组 */ void ImportanceSampling( float * c, int * ResampleIndex, int N ) { float rnum, * cumulateWeight; int i, j; cumulateWeight = new float [N+1]; /* 申请累计权重数组内存,大小为N+1 */ NormalizeCumulatedWeight( c, cumulateWeight, N ); /* 计算累计权重 */ for ( i = 0; i < N; i++ ) { rnum = rand0_1(); /* 随机产生一个[0,1]间均匀分布的数 */ j = BinearySearch( rnum, cumulateWeight, N+1 ); /* 搜索<=rnum的最小索引j */ if ( j == N ) j--; ResampleIndex[i] = j; /* 放入重采样索引数组 */ } delete cumulateWeight; return; } /* 样本选择,从N个输入样本中根据权重重新挑选出N个 输入参数: SPACESTATE * state: 原始样本集合(共N个) float * weight: N个原始样本对应的权重 int N: 样本个数 输出参数: SPACESTATE * state: 更新过的样本集 */ void ReSelect( SPACESTATE * state, float * weight, int N ) { SPACESTATE * tmpState; int i, * rsIdx; tmpState = new SPACESTATE[N]; rsIdx = new int[N]; ImportanceSampling( weight, rsIdx, N ); /* 根据权重重新采样 */ for ( i = 0; i < N; i++ ) tmpState[i] = state[rsIdx[i]];//temState为临时变量,其中state[i]用state[rsIdx[i]]来代替 for ( i = 0; i < N; i++ ) state[i] = tmpState[i]; delete[] tmpState; delete[] rsIdx; return; } /* 传播:根据系统状态方程求取状态预测量 状态方程为: S(t) = A S(t-1) + W(t-1) W(t-1)为高斯噪声 输入参数: SPACESTATE * state: 待求的状态量数组 int N: 待求状态个数 输出参数: SPACESTATE * state: 更新后的预测状态量数组 */ void Propagate( SPACESTATE * state, int N) { int i; int j; float rn[7]; /* 对每一个状态向量state[i](共N个)进行更新 */ for ( i = 0; i < N; i++ ) /* 加入均值为0的随机高斯噪声 */ { for ( j = 0; j < 7; j++ ) rn[j] = randGaussian( 0, (float)0.6 ); /* 产生7个随机高斯分布的数 */ state[i].xt = (int)(state[i].xt + state[i].v_xt * DELTA_T + rn[0] * state[i].Hxt + 0.5); state[i].yt = (int)(state[i].yt + state[i].v_yt * DELTA_T + rn[1] * state[i].Hyt + 0.5); state[i].v_xt = (float)(state[i].v_xt + rn[2] * VELOCITY_DISTURB); state[i].v_yt = (float)(state[i].v_yt + rn[3] * VELOCITY_DISTURB); state[i].Hxt = (int)(state[i].Hxt+state[i].Hxt*state[i].at_dot + rn[4] * SCALE_DISTURB + 0.5); state[i].Hyt = (int)(state[i].Hyt+state[i].Hyt*state[i].at_dot + rn[5] * SCALE_DISTURB + 0.5); state[i].at_dot = (float)(state[i].at_dot + rn[6] * SCALE_CHANGE_D); cvCircle(pTrackImg,cvPoint(state[i].xt,state[i].yt),3, CV_RGB(0,255,0),-1); } return; } /* 观测,根据状态集合St中的每一个采样,观测直方图,然后 更新估计量,获得新的权重概率 输入参数: SPACESTATE * state: 状态量数组 int N: 状态量数组维数 unsigned char * image: 图像数据,按从左至右,从上至下的顺序扫描, 颜色排列次序:RGB, RGB, ... int W, H: 图像的宽和高 float * ObjectHist: 目标直方图 int hbins: 目标直方图条数 输出参数: float * weight: 更新后的权重 */ void Observe( SPACESTATE * state, float * weight, int N, unsigned char * image, int W, int H, float * ObjectHist, int hbins ) { int i; float * ColorHist; float rho; ColorHist = new float[hbins]; for ( i = 0; i < N; i++ ) { /* (1) 计算彩色直方图分布 */ CalcuColorHistogram( state[i].xt, state[i].yt,state[i].Hxt, state[i].Hyt, image, W, H, ColorHist, hbins ); /* (2) Bhattacharyya系数 */ rho = CalcuBhattacharyya( ColorHist, ObjectHist, hbins ); /* (3) 根据计算得的Bhattacharyya系数计算各个权重值 */ weight[i] = CalcuWeightedPi( rho ); } delete ColorHist; return; } /* 估计,根据权重,估计一个状态量作为跟踪输出 输入参数: SPACESTATE * state: 状态量数组 float * weight: 对应权重 int N: 状态量数组维数 输出参数: SPACESTATE * EstState: 估计出的状态量 */ void Estimation( SPACESTATE * state, float * weight, int N, SPACESTATE & EstState ) { int i; float at_dot, Hxt, Hyt, v_xt, v_yt, xt, yt; float weight_sum; at_dot = 0; Hxt = 0; Hyt = 0; v_xt = 0; v_yt = 0; xt = 0; yt = 0; weight_sum = 0; for ( i = 0; i < N; i++ ) /* 求和 */ { at_dot += state[i].at_dot * weight[i]; Hxt += state[i].Hxt * weight[i]; Hyt += state[i].Hyt * weight[i]; v_xt += state[i].v_xt * weight[i]; v_yt += state[i].v_yt * weight[i]; xt += state[i].xt * weight[i]; yt += state[i].yt * weight[i]; weight_sum += weight[i]; } /* 求平均 */ if ( weight_sum <= 0 ) weight_sum = 1; /* 防止被0除,一般不会发生 */ EstState.at_dot = at_dot/weight_sum; EstState.Hxt = (int)(Hxt/weight_sum + 0.5 ); EstState.Hyt = (int)(Hyt/weight_sum + 0.5 ); EstState.v_xt = v_xt/weight_sum; EstState.v_yt = v_yt/weight_sum; EstState.xt = (int)(xt/weight_sum + 0.5 ); EstState.yt = (int)(yt/weight_sum + 0.5 ); return; } /************************************************************ 模型更新 输入参数: SPACESTATE EstState: 状态量的估计值 float * TargetHist: 目标直方图 int bins: 直方图条数 float PiT: 阈值(权重阈值) unsigned char * img: 图像数据,RGB形式 int W, H: 图像宽高 输出: float * TargetHist: 更新的目标直方图 ************************************************************/ # define ALPHA_COEFFICIENT 0.2 /* 目标模型更新权重取0.1-0.3 */ int ModelUpdate( SPACESTATE EstState, float * TargetHist, int bins, float PiT, unsigned char * img, int W, int H ) { float * EstHist, Bha, Pi_E; int i, rvalue = -1; EstHist = new float [bins]; /* (1)在估计值处计算目标直方图 */ CalcuColorHistogram( EstState.xt, EstState.yt, EstState.Hxt, EstState.Hyt, img, W, H, EstHist, bins ); /* (2)计算Bhattacharyya系数 */ Bha = CalcuBhattacharyya( EstHist, TargetHist, bins ); /* (3)计算概率权重 */ Pi_E = CalcuWeightedPi( Bha ); if ( Pi_E > PiT ) { for ( i = 0; i < bins; i++ ) { TargetHist[i] = (float)((1.0 - ALPHA_COEFFICIENT) * TargetHist[i] + ALPHA_COEFFICIENT * EstHist[i]); } rvalue = 1; } delete EstHist; return( rvalue ); } /* 系统清除 */ void ClearAll() { if ( ModelHist != NULL ) delete [] ModelHist; if ( states != NULL ) delete [] states; if ( weights != NULL ) delete [] weights; return; } /********************************************************************** 基于彩色直方图的粒子滤波算法总流程 输入参数: unsigned char * img: 图像数据,RGB形式 int W, H: 图像宽高 输出参数: int &xc, &yc: 找到的图像目标区域中心坐标 int &Wx_h, &Hy_h: 找到的目标的半宽高 float &max_weight: 最大权重值 返回值: 成功1,否则-1 基于彩色直方图的粒子滤波跟踪算法的完整使用方法为: (1)读取彩色视频中的1帧,并确定初始区域,以此获得该区域的中心点、 目标的半高、宽,和图像数组(RGB形式)、图像高宽参数。 采用初始化函数进行初始化 int Initialize( int x0, int y0, int Wx, int Hy, unsigned char * img, int W, int H ) (2)循环调用下面函数,直到N帧图像结束 int ColorParticleTracking( unsigned char * image, int W, int H, int & xc, int & yc, int & Wx_h, int & Hy_h ) 每次调用的输出为:目标中心坐标和目标的半高宽 如果函数返回值<0,则表明目标丢失。 (3)清除系统各个变量,结束跟踪 void ClearAll() **********************************************************************/ int ColorParticleTracking( unsigned char * image, int W, int H, int & xc, int & yc, int & Wx_h, int & Hy_h, float & max_weight) { SPACESTATE EState; int i; /* 选择:选择样本,并进行重采样 */ ReSelect( states, weights, NParticle ); /* 传播:采样状态方程,对状态变量进行预测 */ Propagate( states, NParticle); /* 观测:对状态量进行更新 */ Observe( states, weights, NParticle, image, W, H, ModelHist, nbin ); /* 估计:对状态量进行估计,提取位置量 */ Estimation( states, weights, NParticle, EState ); xc = EState.xt; yc = EState.yt; Wx_h = EState.Hxt; Hy_h = EState.Hyt; /* 模型更新 */ ModelUpdate( EState, ModelHist, nbin, Pi_Thres, image, W, H ); /* 计算最大权重值 */ max_weight = weights[0]; for ( i = 1; i < NParticle; i++ ) max_weight = max_weight < weights[i] ? weights[i] : max_weight; /* 进行合法性检验,不合法返回-1 */ if ( xc < 0 || yc < 0 || xc >= W || yc >= H || Wx_h <= 0 || Hy_h <= 0 ) return( -1 ); else return( 1 ); } //把iplimage 转到img 数组中,BGR->RGB void IplToImge(IplImage* src, int w,int h) { int i,j; for ( j = 0; j < h; j++ ) // 转成正向图像 for ( i = 0; i < w; i++ ) { img[ ( j*w+i )*3 ] = R(src,i,j); img[ ( j*w+i )*3+1 ] = G(src,i,j); img[ ( j*w+i )*3+2 ] = B(src,i,j); } } void mouseHandler(int event, int x, int y, int flags, void* param)//在这里要注意到要再次调用cvShowImage,才能显示方框 { CvMemStorage* storage = cvCreateMemStorage(0); CvSeq * contours; IplImage* pFrontImg1 = 0; int centerX,centerY; int delt = 10; pFrontImg1=cvCloneImage(pFrontImg);//这里也要注意到如果在 cvShowImage("foreground",pFrontImg1)中用pFrontImg产效果,得重新定义并复制 switch(event){ case CV_EVENT_LBUTTONDOWN: //printf("laskjfkoasfl\n"); //寻找轮廓 if(pause) { cvFindContours(pFrontImg,storage,&contours,sizeof(CvContour),CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE); //在原场景中绘制目标轮廓的外接矩形 for (;contours;contours = contours->h_next) { CvRect r = ((CvContour*)contours)->rect; if(x>r.x&&x<(r.x+r.width)&&y>r.y&&r.y<(r.y+r.height)) { if (r.height*r.width>CONTOUR_MIN_AREA && r.height*r.width<CONTOUR_MAX_AREA) { centerX = r.x+r.width/2;//得到目标中心点 centerY = r.y+r.height/2; WidIn = r.width/2;//得到目标半宽与半高 HeiIn = r.height/2; xin = centerX; yin = centerY; cvRectangle(pFrontImg1,cvPoint(r.x,r.y),cvPoint(r.x+r.width,r.y+r.height),cvScalar(255,255,255),2,8,0); //Initial_MeanShift_tracker(centerX,centerY,WidIn,HeiIn,img,Wid,Hei,1./delt); //初始化跟踪变量 /* 初始化跟踪器 */ Initialize( centerX, centerY, WidIn, HeiIn, img, Wid, Hei ); track = true;//进行跟踪 cvShowImage("foreground",pFrontImg1); return; } } } } break; case CV_EVENT_LBUTTONUP: printf("Left button up\n"); break; } } //void on_mouse(int event, int x, int y, int flags, void *param) //{ // if(!image) // return ; // if(image->origin) // { // image->origin = 0; // y = image->height - y; // } // if(selecting) //正在选择物体 // { // selection.x = MIN(x,origin.x); // selection.y = MIN(y,origin.y); // selection.width = selection.x + CV_IABS(x - origin.x); // selection.height = selection.y + CV_IABS(y - origin.y); // // selection.x = MAX(selection.x ,0); // selection.y = MAX(selection.y,0); // selection.width = MIN(selection.width,image->width); // selection.height = MIN(selection.height,image->height); // selection.width -= selection.x; // selection.height -= selection.y; // } // switch(event) // { // case CV_EVENT_LBUTTONDOWN: // origin = cvPoint(x,y); // selection = cvRect(x,y,0,0); // selecting = 1; // break; // case CV_EVENT_LBUTTONUP: // selecting = 0; // if(selection.width >0 && selection.height >0) // selected = 1; // break; // } //} void main() { int FrameNum=0; //帧号 int k=0; CvCapture *capture = cvCreateFileCapture("test.avi"); char res1[20],res2[20]; //CvCapture *capture = cvCreateFileCapture("test1.avi"); //CvCapture *capture = cvCreateFileCapture("camera1_mov.avi"); IplImage* frame[Num]; //用来存放图像 int i,j; uchar key = false; //用来设置暂停 float rho_v;//表示相似度 float max_weight; int sum=0; //用来存放两图像帧差后的值 for (i=0;i<Num;i++) { frame[i]=NULL; } IplImage *curFrameGray=NULL; IplImage *frameGray=NULL; CvMat *Mat_D,*Mat_F; //动态矩阵与帧差后矩阵 int row ,col; cvNamedWindow("video",1); cvNamedWindow("background",1); cvNamedWindow("foreground",1); cvNamedWindow("tracking",1); cvSetMouseCallback("tracking",mouseHandler,0);//响应鼠标 while (capture) { curframe=cvQueryFrame(capture); //抓取一帧 if(FrameNum<Num) { if(FrameNum==0)//第一帧时初始化过程 { curFrameGray=cvCreateImage(cvGetSize(curframe),IPL_DEPTH_8U,1); frameGray=cvCreateImage(cvGetSize(curframe),IPL_DEPTH_8U,1); pBackImg=cvCreateImage(cvGetSize(curframe),IPL_DEPTH_8U,1); pFrontImg=cvCreateImage(cvGetSize(curframe),IPL_DEPTH_8U,1); pTrackImg = cvCreateImage(cvGetSize(curframe),IPL_DEPTH_8U,3); cvSetZero(pFrontImg); cvCvtColor(curframe,pBackImg,CV_RGB2GRAY); row=curframe->height; col=curframe->width; Mat_D=cvCreateMat(row,col,CV_32FC1); cvSetZero(Mat_D); Mat_F=cvCreateMat(row,col,CV_32FC1); cvSetZero(Mat_F); Wid = curframe->width; Hei = curframe->height; img = new unsigned char [Wid * Hei * 3]; } frame[k]=cvCloneImage(curframe); //把前num帧存入到图像数组 pTrackImg = cvCloneImage(curframe); } else { k=FrameNum%Num; pTrackImg = cvCloneImage(curframe); IplToImge(curframe,Wid,Hei); cvCvtColor(curframe,curFrameGray,CV_RGB2GRAY); cvCvtColor(frame[k],frameGray,CV_RGB2GRAY); for(i=0;i<curframe->height;i++) for(j=0;j<curframe->width;j++) { sum=S(curFrameGray,j,i)-S(frameGray,j,i); sum=sum<0 ? -sum : sum; if(sum>T) //文献中公式(1) { CV_MAT_ELEM(*Mat_F,float,i,j)=1; } else { CV_MAT_ELEM(*Mat_F,float,i,j)=0; } if(CV_MAT_ELEM(*Mat_F,float,i,j)!=0)//文献中公式(2) CV_MAT_ELEM(*Mat_D,float,i,j)=Re; else{ if(CV_MAT_ELEM(*Mat_D,float,i,j)!=0) CV_MAT_ELEM(*Mat_D,float,i,j)=CV_MAT_ELEM(*Mat_D,float,i,j)-1; } if(CV_MAT_ELEM(*Mat_D,float,i,j)==0.0) { //文献中公式(3) S(pBackImg,j,i)=(uchar)((1-ai)*S(pBackImg,j,i)+ai*S(curFrameGray,j,i)); } sum=S(curFrameGray,j,i)-S(pBackImg,j,i);//背景差分法 sum=sum<0 ? -sum : sum; if(sum>40) { S(pFrontImg,j,i)=255; } else S(pFrontImg,j,i)=0; } frame[k]=cvCloneImage(curframe); } FrameNum++; k++; cout<<FrameNum<<endl; //进行形态学滤波,去噪 cvDilate(pFrontImg, pFrontImg, 0, 2); cvErode(pFrontImg, pFrontImg, 0, 3); cvDilate(pFrontImg, pFrontImg, 0, 1); if(track) { /* 跟踪一帧 */ rho_v = ColorParticleTracking( img, Wid, Hei, xout, yout, WidOut, HeiOut, max_weight); /* 画框: 新位置为蓝框 */ if ( rho_v > 0 && max_weight > 0.0001 ) /* 判断是否目标丢失 */ { cvRectangle(pFrontImg,cvPoint(xout - WidOut,yout - HeiOut),cvPoint(xout+WidOut,yout+HeiOut),cvScalar(255,255,255),2,8,0); cvRectangle(pTrackImg,cvPoint(xout - WidOut,yout - HeiOut),cvPoint(xout+WidOut,yout+HeiOut),cvScalar(255,255,255),2,8,0); xin = xout; yin = yout; WidIn = WidOut; HeiIn = HeiOut; /*draw_rectangle( pBuffer, Width, Height, xo, Height-yo-1, wo, ho, 0x00ff0000, 2 ); xb = xo; yb = yo; wb = wo; hb = ho;*/ } } cvShowImage("video",curframe); cvShowImage("foreground",pFrontImg); cvShowImage("background",pBackImg); cvShowImage("tracking",pTrackImg); /*sprintf(res1,"fore%d.jpg",FrameNum); cvSaveImage(res1,pFrontImg); sprintf(res2,"ground%d.jpg",FrameNum); cvSaveImage(res2,pBackImg);*/ cvSetMouseCallback("foreground",mouseHandler,0);//响应鼠标 key = cvWaitKey(1); if(key == 'p') pause = true; while(pause) if(cvWaitKey(0)=='p') pause = false; } cvReleaseImage(&curFrameGray); cvReleaseImage(&frameGray); cvReleaseImage(&pBackImg); cvReleaseImage(&pFrontImg); cvDestroyAllWindows(); // Clear_MeanShift_tracker(); ClearAll(); }
实验结果:
自此,毕业论文涉及的经典算法已经全部给出,我自己提出的破算法就不献丑了。
马上去华为上班咯,可能搞通信去了,破企业网部门,唉
如果周末有空的话,我还是会继续搞图像处理的,这次下了不少人脸美化、超分辨率修正的论文,得好好读读。
另外打个广告,我毕业前自己弄得android app《色盲相机》,下载地址:
木蚂蚁:http://www.mumayi.com/android-631836.html
360: http://zhushou.360.cn/detail/index/soft_id/1780912
网易: http://m.163.com/android/software/32jkam.html
核心思想来自斯坦福大学的课程设计及一个日本老头公开的matlab代码
有空大家给我点点广告哈~~