【算法导论】每对顶点之间的最短路径算法

简介:         对于一个顶点数为N的有向网路图,我们可以通过前面所提到的单源最短路径算法执行N次来获得每一对顶点间的最短路径。这种方法的时间复杂度为O(N*N*N)。

        对于一个顶点数为N的有向网路图,我们可以通过前面所提到的单源最短路径算法执行N次来获得每一对顶点间的最短路径。这种方法的时间复杂度为O(N*N*N)。如果网络中有负权值的边,则需要使用前面提到的单源最短路径算法之Bellman—Floyd算法。总之,总可以通过单源最短路径来求得每对顶点间的最短路径。这里我就不再用程序实现上述方法,下面介绍Floyd解决这一问题的另一种算法,它形式简单,利于理解,而且时间复杂度同样为O(N*N*N)。

       Floyd算法是根据给定有向网络的邻接矩阵dist[n][n]来求顶点vi到顶点vj的最短路径。这一算法的基本思想是:假设vi和vj之间存在一条路径,但这并不一定是最短路径,试着在vi和vj之间增加一个中间顶点vk。 若增加vk后的路径(vi, vk, vj) 比(vi, vj)短,则以新的路径代替原路径,并且修改dist[i][j]的值为新路径的权值;若增加vk后的路径比(vi, vj)更长,则维持dist[i][j]不变。然后在修改后的dist矩阵中,另选一个顶点作为中间顶点,重复以上的操作,直到除vi和vj顶点的其余顶点都做过中间顶点为止。下面以具体实例来说明问题:

假设有向网路图如下所示:


设原始的最短路径矩阵为L(1),经过一次循环后得到新的最短矩阵为L(2),依此类推,当得到L(N-1)时,我们就得到了最短的路径矩阵。最短路径矩阵的变化情况如下:


具体程序实现如下:

#include<stdio.h>

#define N 5 //顶点个数
#define MAX 10000

void Floyd(int dist[N][N],int A[N][N],int path[N][N])
{


	for(int i=0;i<N;i++)
		for(int j=0;j<N;j++)
			for(int k=0;k<N;k++)
			{
				/*if(A[i][j]>(A[i][k]+dist[k][j]))//方法一:计算每一次矩阵
				{
					A[i][j]=(A[i][k]+dist[k][j]);
					path[i][j]=path[k][j];
				}*/
				if(A[i][j]>(A[i][k]+A[k][j]))//方法二:计算2的幂次矩阵
				{
					A[i][j]=(A[i][k]+A[k][j]);
					path[i][j]=path[k][j];
				}
			}
}

void main()
{
	int dist[N][N]={{0,3,8,MAX,-4},//图的邻接矩阵
	                {MAX,0,MAX,1,7},
	                {MAX,4,0,MAX,MAX},
	                {2,MAX,-5,0,MAX},
	                {MAX,MAX,MAX,6,0}};
	int A[N][N];
	int path[N][N]={0};//给出两顶点间的路径
	int pre=0;

	for(int i=0;i<N;i++)
		for(int j=0;j<N;j++)
		{
			A[i][j]=dist[i][j];
			if(dist[i][j]!=MAX)
				path[i][j]=i+1;
			else
				path[i][j]=0;
		}
	
	for(int k=0;k<2;k++)//若用方法一,需循环N-3次,若用方法二,需要循环lg(N-1)次
		Floyd(dist,A,path);

	printf("每对顶点间的最短路径矩阵为:\n");
	for(int i=0;i<N;i++)
	{
		for(int j=0;j<N;j++)
			printf("%d ",A[i][j]);
		printf("\n");
	}
	printf("\n每对顶点的具体最短路径为:\n");
	
	for(int i=0;i<N;i++)
	{
		for(int j=0;j<N;j++)
		{
			printf("%d: %d ",A[i][j],j+1);
		pre=path[i][j];
		while((pre!=0)&&(pre!=i+1))
		{
			printf("<- %d ",pre);
			pre=path[i][pre-1];
		}
		printf(" <- %d\n",i+1);
		}
	}
}

结果显示如下:



程序不但显示了两点之间的最短路径长度,而且显示了具体的路径。在程序中,我用了两种方法求最短路径矩阵,其中第二种方法更加简单的,因为我们要求的最短路径矩阵为L(N-1)。比如说当N=5时,我们需要最终得到L(4),我们可以只求L(1)、L(2)、L(4),而不需要求得每一个L。


注:如果程序出错,可能是使用的开发平台版本不同,请点击如下链接: 解释说明


原文:http://blog.csdn.net/tengweitw/article/details/17577623

作者:nineheadedbird


目录
相关文章
|
3月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
112 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
5月前
|
算法 定位技术
路径规划算法 - 求解最短路径 - A*(A-Star)算法
路径规划算法 - 求解最短路径 - A*(A-Star)算法
190 1
|
5月前
|
自然语言处理 算法
HanLP — HMM隐马尔可夫模型 - 路径规划算法 - 求解最短路径 - 维特比(Viterbi)算法
HanLP — HMM隐马尔可夫模型 - 路径规划算法 - 求解最短路径 - 维特比(Viterbi)算法
73 0
HanLP — HMM隐马尔可夫模型 - 路径规划算法 - 求解最短路径 - 维特比(Viterbi)算法
|
6月前
|
算法 Java
Java语言实现最短路径算法(Shortest Path)
Java语言实现最短路径算法(Shortest Path)
80 3
|
5月前
|
算法
路径规划算法 - 求解最短路径 - Dijkstra(迪杰斯特拉)算法
路径规划算法 - 求解最短路径 - Dijkstra(迪杰斯特拉)算法
130 0
|
7月前
|
算法 Java
Java数据结构与算法:最短路径算法
Java数据结构与算法:最短路径算法
|
7月前
|
算法 Java 定位技术
Java数据结构与算法:贪心算法之最短路径
Java数据结构与算法:贪心算法之最短路径
|
7天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
7天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
101 68
|
16天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。