【算法导论】八皇后问题的算法实现(C、MATLAB、Python版)

简介:         八皇后问题是一道经典的回溯问题。问题描述如下:皇后可以在横、竖、斜线上不限步数地吃掉其他棋子。如何将8个皇后放在棋盘上(有8*8个方格),使它们谁也不能被吃掉?         看到这个问题,最容易想到的就是遍历穷举法,不过仔细一想,思路虽然非常清晰,但是需要遍历次数太多,时间复杂度很高。
        八皇后问题是一道经典的回溯问题。问题描述如下:皇后可以在横、竖、斜线上不限步数地吃掉其他棋子。如何将8个皇后放在棋盘上(有8*8个方格),使它们谁也不能被吃掉?
        看到这个问题,最容易想到的就是遍历穷举法,不过仔细一想,思路虽然非常清晰,但是需要遍历次数太多,时间复杂度很高。那么,我们应该怎么办呢?下面给出算法思路:
        算法思想:首先尝试在第一行放置第一个皇后,然后在第二行放置第二个使之与前面的皇后不构成威胁,依此类推。如果发现不能放置下一个皇后,就回溯到上一步,试着将皇后放在其他的位置。最后,或者尝试完所有的可能或者找到解决方案。
        这种算法思想与中国的一句古话“不撞南墙不回头”类似:一路向前走,直到走到死胡同,然后往回走,回到上一个岔路口,重新选择一个方向,继续向前走,直到到达目的地。
        下面给出了该算法的具体实现,用C、MATLAB、PYTHON分别进行了实现,由于程序给出了比较详细的注释,因此就不对具体程序解释说明了。

C语言实现:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define N 8//棋盘大小

int matrix[N][N];//存储皇后的位置,其实也可以用一维数组表示

void PrintQueen();//打印棋盘
void PlaceQueen(int row);//放置皇后
int Conflict(int row,int col);//检查当前皇后是否与之前的冲突

int main()
{
    PlaceQueen(0);
    return 0;
}

void PrintQueen()
{
    static int solutionNum=0;//看总共有多少种情况
    solutionNum+=1;
    int row,col;
    printf("第%d种方法:\n",solutionNum);
    for(row=0;row<N;row+=1)
    {
        for(col=0;col<N;col+=1)
        {
            if(matrix[row][col])
            {
                printf("* ");
            }
            else
            {
                printf("- ");
            }
        }
        printf("\n");
    }
    printf("\n");
}

int Conflict(int row,int col)
{
	for (int m = 0; m <row ; m++) 
	{  
        for (int n = 0; n <N; n++)
		{   
            if (matrix[m][n] == 1) //  每一行只有一个皇后  
			{  
                if ( n == col || abs(row - m) == abs(col - n) )   // 检查是否与之前的皇后冲突
                    return false;  
            }  
        }  
    }  
    return true;
}

void PlaceQueen(int row)
{
	if(row>=N)//已经放置了N个皇后
	{
		PrintQueen();
	}
	else
	{
		for(int col=0;col<N;col++)
		{
			matrix[row][col]=1;
			if(row==0||Conflict(row,col))
					PlaceQueen(row+1);//递归调用		
			matrix[row][col]=0;		
		}
		
	}
	
}

MATLAB实现

脚本文件Queen.m

 clear all
clc
 
global solutionNum;
solutionNum=0;%全局变量记录方法数
N=8;%皇后个数
matrix=zeros(N);%存储皇后位置信息
 
PlaceQueen(1,matrix,N)%调用放置方法


函数文件PlaceQueen.m

function PlaceQueen(row,matrix,N)%回溯法放置皇后
 
    if row>N
        PrintQueen(N,matrix);%打印棋盘
    else
        for col=1:N
            matrix(row,col)=1;
            if row==1||Conflict(row,col,N,matrix)%检测是否冲突
                PlaceQueen(row+1,matrix,N);
            end
            matrix(row,col)=0;
        end
    end
    
    %子函数:检测冲突
    function result=Conflict(row,col,N,matrix)%检测是否冲突
 
    result=1;
    for i=1:row-1
        for j=1:N
            if matrix(i,j)==1
                if ((j==col)||(abs(row-i)==abs(col-j)))%是否产生冲突:在同一直线,斜线上
                    result=0;
                    break;
                end
            end
        end
        if result==0
            break;
        end
    end
     
    %子函数:打印棋盘信息
function PrintQueen(N,matrix)
 
    global solutionNum; %定义全局变量,来累积方法数
    solutionNum=solutionNum+1;
    
    disp(['第',num2str(solutionNum),'种方法:'])
 
disp(matrix)

PYTHON实现:

def conflict(state,nextX):#冲突检测函数
    nextY=len(state)
    for i in range(nextY):
        if abs(state[i]-nextX) in (0,nextY-i):#检测是否在同一直线、斜线
            return True
    return False

def queens(num=8,state=()): #放置皇后,采用元组state来存储皇后的位置
    for pos in range(num):
        if not conflict(state,pos):
            if len(state)==num-1:
                yield (pos)
            else:
                for result in queens(num,state+(pos,)):
                    yield (pos,)+result



for solution in queens(8):
    print (solution)
    
print('总共的方法数为:',len(list(queens(8))))

运行结果分别如下:

1、C语言的运行结果:


2、MATLAB语言的运行结果:


3、PYTHON语言的运行结果:
 

扩展:

上面的程序中,改变N的值就可以解决N皇后的问题了, 但还可以 用分治法来解决N皇后的问题,具体参见文献 《N皇后问题解的构造和等价性分析》。下面的Matlab程序给出了一个简单的算法过程:
4皇后的一种放置方式:
     0     0     1     0
     1     0     0     0
     0     0     0     1
     0     1     0     0
根据4皇后的放置方式可以推导出16皇后的一种放置方式:
     0     0     0     0     0     0     0     0     0     0     1     0     0     0     0     0
     0     0     0     0     0     0     0     0     1     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     1     0     0     0     0
     0     0     0     0     0     0     0     0     0     1     0     0     0     0     0     0
     0     0     1     0     0     0     0     0     0     0     0     0     0     0     0     0
     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     1     0     0     0     0     0     0     0     0     0     0     0     0
     0     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     1     0
     0     0     0     0     0     0     0     0     0     0     0     0     1     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     1
     0     0     0     0     0     0     0     0     0     0     0     0     0     1     0     0
     0     0     0     0     0     0     1     0     0     0     0     0     0     0     0     0
     0     0     0     0     1     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     1     0     0     0     0     0     0     0     0
     0     0     0     0     0     1     0     0     0     0     0     0     0     0     0     0
依次类推,可以得到4的幂次皇后的一种放置方式,不过 值得注意的是2、3、8、9、14、15、26、27、38、39这10个N值不能采用这种分治法。
由4皇后直接推出16皇后的Matlab实现如下:
clear all
clc
 
a4=[  0     0     1     0
     1     0     0     0
     0     0     0     1
     0     1     0     0]
 [asize bsize]=size(a4);
 
 a16=zeros(asize^2,bsize^2);
 [rowIndex,colIndex]=find(a4);
 
 for i=1:length(rowIndex)
     a16((1+asize*(rowIndex(i)-1)):asize*rowIndex(i),(1+asize*(colIndex(i)-1)):asize*colIndex(i))=a4;
 end
 a16


运行结果如下:



原文:http://blog.csdn.net/tengweitw/article/details/44648249
作者:nineheadedbird










目录
相关文章
|
23天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
232 55
|
14天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
146 80
|
11天前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
103 66
|
2天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
1天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
14 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
2天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
1天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
7天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
10天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
6天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。