中国人工智能学会通讯——最优传输理论在机器学习中的应用 1.2 概率分布逼近

简介:

1.2 概率分布逼近

深度学习的方法强劲有力,几乎横扫计算机视觉的所有领域,很多人将其归 功 于 神 经 网 络 的 万 有 逼 近 能 力(universal approximation property):给定一个连续函数 或者映射,理论上可以用一个包含足够多神 经元的隐层 , 或者多层前馈网络逼近到任意 精度。对此,我们提出另外的观点:有些情 况下,神经网络逼近的不是函数或映射,而 是概率分布;更为重要的,逼近概率分布比 逼近映射要容易得多。更为精密的说法如下: 在理想情况下,即逼近误差为零的情形,如 果神经网络逼近一个映射,那么解空间只包 含一个映射;如果神经网络逼近一个概率分布, 那么解空间包含无穷多个映射,这些映射的差 别构成一个无穷维李群。这是我们更为看好逼 近概率分布,而非逼近映射的原因之一。

1. 概率生成模型

首先看最简单的(伪)随机数生成器。 我们选取适当的整数 a、b 、m ,计算序列

image

这个最优传输映射是某个凸函数的梯度 映射,这个凸函数被称为是 Brenier 势能函 数,满足蒙日-安培方程。如图 14 所示,我 们将怪兽曲面(第一帧和第四帧)保角地映 射到平面圆盘上面(第二帧),保角映射将 曲面的面积元映射到平面上,诱导了平面圆 盘上的一个概率测度。平面圆盘上也有均匀 概率分布(第三帧),从第二帧到第三帧的映射为最优传输映射。图 14 和 15 显示了基 于最优传输映射的曲面保面积参数化(Surface Area-preserving Parameterization)。

image
image

2. 映射极分解理论

image
image
image
image
image

3. 小结

通过以上讨论,我们看到如果用一个深 度学习的网络来逼近一个映射,解空间只有 一个映射;如果来逼近一个概率分布,则解 空间为无穷维的保体积微分同胚群。因此, 用深度学习网络来逼近一个概率分布要比逼 近一个映射函或者数容易得多。这或许可以 用来解释如下的现象:基于我们以往的经验, 用神经网络来求解非线性偏微分方程,要比 用神经网络做图像分类困难,因为前者需要 精确逼近泛函空间中的可逆映射,而后者需 要逼近图像空间中的概率分布。

相关文章
|
2月前
|
机器学习/深度学习 人工智能 物联网
通义灵码在人工智能与机器学习领域的应用
通义灵码不仅在物联网领域表现出色,还在人工智能、机器学习、金融、医疗和教育等领域展现出广泛应用前景。本文探讨了其在这些领域的具体应用,如模型训练、风险评估、医疗影像诊断等,并总结了其提高开发效率、降低门槛、促进合作和推动创新的优势。
通义灵码在人工智能与机器学习领域的应用
|
2月前
|
机器学习/深度学习 传感器 自动驾驶
探索机器学习在图像识别中的创新应用
本文深入分析了机器学习技术在图像识别领域的最新进展,探讨了深度学习算法如何推动图像处理技术的突破。通过具体案例分析,揭示了机器学习模型在提高图像识别准确率、效率及应用场景拓展方面的潜力。文章旨在为读者提供一个全面的视角,了解当前机器学习在图像识别领域的创新应用和未来发展趋势。
|
20天前
|
机器学习/深度学习 监控 算法
机器学习在图像识别中的应用:解锁视觉世界的钥匙
机器学习在图像识别中的应用:解锁视觉世界的钥匙
266 95
|
5天前
|
机器学习/深度学习 数据采集 算法
机器学习在生物信息学中的创新应用:解锁生物数据的奥秘
机器学习在生物信息学中的创新应用:解锁生物数据的奥秘
75 36
|
4天前
|
存储 分布式计算 MaxCompute
使用PAI-FeatureStore管理风控应用中的特征
PAI-FeatureStore 是阿里云提供的特征管理平台,适用于风控应用中的离线和实时特征管理。通过MaxCompute定义和设计特征表,利用PAI-FeatureStore SDK进行数据摄取与预处理,并通过定时任务批量计算离线特征,同步至在线存储系统如FeatureDB或Hologres。对于实时特征,借助Flink等流处理引擎即时分析并写入在线存储,确保特征时效性。模型推理方面,支持EasyRec Processor和PAI-EAS推理服务,实现高效且灵活的风险控制特征管理,促进系统迭代优化。
25 6
|
28天前
|
机器学习/深度学习 传感器 人工智能
人工智能与机器学习:改变未来的力量####
【10月更文挑战第21天】 在本文中,我们将深入探讨人工智能(AI)和机器学习(ML)的基本概念、发展历程及其在未来可能带来的革命性变化。通过分析当前最前沿的技术和应用案例,揭示AI和ML如何正在重塑各行各业,并展望它们在未来十年的潜在影响。 ####
89 27
|
28天前
|
机器学习/深度学习 数据采集 运维
机器学习在运维中的实时分析应用:新时代的智能运维
机器学习在运维中的实时分析应用:新时代的智能运维
79 12
|
1月前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
52 12
|
10天前
|
人工智能 运维 API
PAI企业级能力升级:应用系统构建、高效资源管理、AI治理
PAI平台针对企业用户在AI应用中的复杂需求,提供了全面的企业级能力。涵盖权限管理、资源分配、任务调度与资产管理等模块,确保高效利用AI资源。通过API和SDK支持定制化开发,满足不同企业的特殊需求。典型案例中,某顶尖高校基于PAI构建了融合AI与HPC的科研计算平台,实现了作业、运营及运维三大中心的高效管理,成功服务于校内外多个场景。
|
2月前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
58 1