《中国人工智能学会通讯》——1.33 基础模型

简介: 本节书摘来自CCAI《中国人工智能学会通讯》一书中的第1章,第1.33节, 更多章节内容可以访问云栖社区“CCAI”公众号查看。

1.33 基础模型

在自然语言处理中,很多任务的输入是变长的文本序列,而传统分类器的输入需要固定大小。因此,我们需要将变长的文本序列表示成固定长度的向量。以句子为例,一个句子的表示(也称为编码)可以看成是句子中所有词的语义组合。因此,句子编码方法近两年也受到广泛关注。句子编码主要研究如何有效地从词嵌入通过不同方式的组合得到句子表示。其中,比较有代表性方法有四种。

第一种是神经词袋模型,简单对文本序列中每个词嵌入进行平均,作为整个序列的表示。这种方法的缺点是丢失了词序信息。对于长文本,神经词袋模型比较有效。但是对于短文本,神经词袋模型很难捕获语义组合信息。

第二种方法是递归神经网络,按照一个外部给定的拓扑结构(比如成分句法树),不断递归得到整个序列的表示[9] 。递归神经网络的一个缺点是需要给定一个拓扑结构来确定词和词之间的依赖关系,因此限制其使用范围。一种改进的方式引入门机制来自动学习拓扑结构[10] 。

第三种是循环神经网络,将文本序列看作时间序列,不断更新,最后得到整个序列的表示。但是简单的循环神经网络存在长期依赖问题,不能有效利用长间隔的历史信息。因此,人们经常使用两个改进的模型:长短时记忆神经网络(LSTM) [11] 和基于门机制的循环单元(GRU) [12] 。

第四种是卷积神经网络,通过多个卷积层和子采样层,最终得到一个固定长度的向量。在一般的深度学习方法中,因为输入是固定维数的,因此子采样层的大小和层数是固定的。为了能够处理变长的句子,一般采用两种方式。一种是层数固定,但是子采样的大小不固定。根据输入的长度和最终向量的维数来动态确定子采样层的大小[13] 。另外一种是将输入的句子通过加入零向量补齐到一个固定长度,然后利用固定大小的卷积网络来得到最终的向量表示[14] 。

在上述四种基本方法的基础上,很多研究者综合这些方法的优点,提出了一些组合模型。Tai 等人[15]基于句法树的长短时记忆神经网络(Tree - LSTM), 将标准 LSTM 的时序结构改为语法树结构,在文本分类上得到非常好提升。Zhu 等人[16]提出了一种递归卷积神经网络模型,在递归神经网络的基础上引入卷积层和子采样层,这样更有效地提取特征组合,并且支持多叉树的拓扑结构。

如果处理的对象是比句子更长的文本序列(比如篇章),为了降低模型复杂度,一般采用层次化的方法。先得到句子编码,然后以句子编码为输入,进一步得到篇章的编码。

在上述模型中,循环神经网络因为非常适合处理文本序列,因此被广泛应用在很多自然语言处理任务上。

相关文章
|
20天前
|
人工智能 数据挖掘 大数据
人工智能模型决策过程:机器与人类协作成效
决策智能(DI)融合AI与人类判断,提升商业决策质量。通过数据驱动的预测与建议,结合人机协作,实现更高效、精准的业务成果,推动企业迈向数据文化新阶段。(238字)
|
6月前
|
数据采集 人工智能 缓存
深挖“全栈智算”之力 中兴通讯开启AI普惠新纪元
深挖“全栈智算”之力 中兴通讯开启AI普惠新纪元
180 1
|
11月前
|
机器学习/深度学习 人工智能 机器人
推荐一些关于将图形学先验知识融入人工智能模型的研究论文
推荐一些关于将图形学先验知识融入人工智能模型的研究论文
263 95
|
11月前
|
机器学习/深度学习 人工智能 图形学
如何将图形学先验知识融入到人工智能模型中?
如何将图形学先验知识融入到人工智能模型中?
281 94
|
10月前
|
人工智能 JSON 算法
魔搭支持在阿里云人工智能平台PAI上进行模型训练、部署了!
现在,魔搭上的众多模型支持在阿里云人工智能平台PAI-Model Gallery上使用阿里云算力资源进行模型训练和部署啦!
555 22
|
机器学习/深度学习 人工智能 数据处理
人工智能平台PAI操作报错合集之任务重启后出现模型拆分报错,该怎么办
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
10月前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
191 12
|
11月前
|
机器学习/深度学习 数据采集 人工智能
探索人工智能中的深度学习模型优化策略
探索人工智能中的深度学习模型优化策略
384 13
|
机器学习/深度学习 人工智能 算法
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
422 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
|
11月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
393 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型

热门文章

最新文章