悦数图数据库推出 AI 知识图谱构建器及图语言生成助手

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
简介: 随着人工智能应用在全球范围的普及和风靡,大语言模型技术(Large Language Model,简称 LLM)受到了广泛的关注和应用。而图数据库作为一种处理复杂数据结构的工具,能够为企业构建行业大语言模型提供强大的支持,包括丰富亿万级别的上下文信息,提升模型的应答精度,从而实现企业级的应用效果。同时,Graph+LLM 可以助力快速构建知识图谱,帮助企业更深入地理解和挖掘数据价值。

随着人工智能应用在全球范围的普及和风靡,大语言模型技术(Large Language Model,简称 LLM)受到了广泛的关注和应用。而图数据库作为一种处理复杂数据结构的工具,能够为企业构建行业大语言模型提供强大的支持,包括丰富亿万级别的上下文信息,提升模型的应答精度,从而实现企业级的应用效果。同时,Graph+LLM 可以助力快速构建知识图谱,帮助企业更深入地理解和挖掘数据价值。

此前经过杭州悦数研发团队与多家知名大语言模型 LLM 技术团队的合作,悦数图数据库已经实现了自然语言生成图查询功能,用户在对话页面通过自然语言就可以实现知识图谱的构建和查询,验证了可落地性。而在悦数图数据库最新升级的悦数图探索 v 3.7.0 版本中,重磅推出了 AI 知识图谱构建器(KG Build(beta))和图语言生成助手(AI assistant)两大功能模块,进一步将其产品化,让用户在产品层面能够真正体验到图技术与大语言模型的融合。

AI 知识图谱构建器:告别繁琐、高成本的知识图谱构建

在步入大数据时代的今天,知识图谱的重要性日益凸显。Gartner 在《2023 年人工智能技术成熟度曲线》报告中指出:知识图谱以一种直观的方式捕捉世界信息,同时仍能表示复杂的关系,它可作为许多产品的支撑,包括搜索、智能助手和推荐引擎。同时,知识图谱支持合作与共享、探索与发现,以及通过分析提取洞察力。生成性 AI 模型也可以与知识图谱结合,向它们的输出添加可信和经过验证的事实。

然而,构建知识图谱一直是一项存在诸多难点的工程。一方面其创建成本极高,德国曼海姆大学的研究表明,对于大型知识图谱,人工创建一个三元组的成本在 2-6 美元之间,Cyc 作为最早的通用知识图谱之一,其构建成本就高达 1.2 亿美元。另一方面,自动创建知识图谱需要复杂的算法和大量代码,有着非常高的技术要求,这些都阻碍了知识图谱的广泛应用。

而在悦数图数据库最新推出的 v3.7.0 产品体系中,重磅推出了 AI 知识图谱构建器功能,它可以接入大型语言模型(LLM),自动处理上传的文件数据,将其转化为知识图谱的形式并存储入库。这一过程不仅节省了大量的人力物力,而且极大提高了数据处理的效率,同时还支持大批量、大规模文件上传至大语言模型,支持用户自定义知识图谱构建任务,使得构建过程更加灵活和便捷。AI 知识图谱构建器为企业提供了一个一站式的解决方案,简化了知识图谱的构建方式,降低了知识图谱的构建门槛,使得通过一个平台完成从数据处理到知识图谱的构建成为可能。这标志着正式告别了过去高成本、步骤繁琐的知识图谱构建,也意味着企业无需就该项目再投入大量的人力和财力,也无需担心因为技术难题和成本问题而无法有效利用自身的数据资源。

图语言生成助手:助力轻松查询图语言

除知识图谱构建器外,悦数图探索 v3.7.0 还推出了图语言生成助手功能。在过去,图数据库的查询语言对普通用户而言一直是一项门槛比较高的操作,需要经过系统的学习或者倚仗专业的技术人员的帮助才能完成。而悦数图探索 v3.7.0 的图语言生成功能可以支持外接大语言模型,支持自然语言对话。也就是说,用户只需要在聊天框中输入自然语言进行与图数据库相关的问询,生成助手会将问题转化为图查询语句,并返回给用户。对于不熟悉或者不擅长图查询语言的用户来说,这无疑大大降低了使用门槛,提升了用户的工作效率。

此次推出的 AI 知识图谱构建器和图语言生成助手和图语言生成助手不仅解决了知识图谱构建的高成本和复杂性问题,也大大降低了图数据库的查询门槛,在各行各业都具备宽广的应用前景,能够赋能客户在各种业务场景中实现更高效、更智能的解决方案。

随着大数据和人工智能技术的不断发展,Graph 和 LLM 的深度融合将成为未来发展的趋势,悦数图数据库一直致力于该领域前沿技术的探索,推出更多能力。

关注悦数图数据库,持续获取第一手的最新能力分享,也可访问悦数图数据库官网咨询企业版,获取悦数图数据库的免费试用机会,轻松构建您的专属知识图谱应用!

相关实践学习
阿里云图数据库GDB入门与应用
图数据库(Graph Database,简称GDB)是一种支持Property Graph图模型、用于处理高度连接数据查询与存储的实时、可靠的在线数据库服务。它支持Apache TinkerPop Gremlin查询语言,可以帮您快速构建基于高度连接的数据集的应用程序。GDB非常适合社交网络、欺诈检测、推荐引擎、实时图谱、网络/IT运营这类高度互连数据集的场景。 GDB由阿里云自主研发,具备如下优势: 标准图查询语言:支持属性图,高度兼容Gremlin图查询语言。 高度优化的自研引擎:高度优化的自研图计算层和存储层,云盘多副本保障数据超高可靠,支持ACID事务。 服务高可用:支持高可用实例,节点故障迅速转移,保障业务连续性。 易运维:提供备份恢复、自动升级、监控告警、故障切换等丰富的运维功能,大幅降低运维成本。 产品主页:https://www.aliyun.com/product/gdb
相关文章
|
2月前
|
人工智能 开发框架 决策智能
谷歌开源多智能体开发框架 Agent Development Kit:百行代码构建复杂AI代理,覆盖整个开发周期!
谷歌开源的Agent Development Kit(ADK)是首个代码优先的Python工具包,通过多智能体架构和灵活编排系统,支持开发者在百行代码内构建复杂AI代理,提供预置工具库与动态工作流定义能力。
364 3
谷歌开源多智能体开发框架 Agent Development Kit:百行代码构建复杂AI代理,覆盖整个开发周期!
|
1月前
|
关系型数据库 OLAP 数据库
拒绝等待!阿里云瑶池数据库 x Qwen3,构建增强式RAG
阿里巴巴发布的通义千问Qwen3在性能上超越多个国际顶尖模型,阿里云瑶池数据库已适配该模型,支持私域部署并与Dify无缝集成。传统RAG方案在处理复杂关系和多跳推理时存在局限,而GraphRAG通过图结构存储知识,结合Qwen3和AnalyticDB PostgreSQL,可有效解决这些问题,提升知识关联检索与分析能力。某新零售客户案例表明,GraphRAG能更好地满足高复杂度业务需求,提供直观的知识图谱可视化服务。阿里云提供Qwen3全系列模型的私域部署解决方案,确保数据安全和服务稳定性。
|
2月前
|
人工智能 关系型数据库 OLAP
光云科技 X AnalyticDB:构建 AI 时代下的云原生企业级数仓
AnalyticDB承载了光云海量数据的实时在线分析,为各个业务线的商家提供了丝滑的数据服务,实时物化视图、租户资源隔离、冷热分离等企业级特性,很好的解决了SaaS场景下的业务痛点,也平衡了成本。同时也基于通义+AnalyticDB研发了企业级智能客服、智能导购等行业解决方案,借助大模型和云计算为商家赋能。
144 17
|
2月前
|
安全 OLAP 数据库
拒绝等待!阿里云瑶池数据库 x Qwen3,构建增强式RAG
阿里云瑶池 Dify on DMS + AnalyticDB 现已支持通义千问 Qwen3 全系列模型的私域部署,并提供独占模型服务,实现高效安全的 GraphRAG 业务应用及大模型应用开发解决方案。
|
3月前
|
人工智能 程序员 API
Motia:程序员福音!AI智能体三语言混编,零基础秒级部署
Motia 是一款专为软件工程师设计的 AI Agent 开发框架,支持多种编程语言,提供零基础设施部署、模块化设计和内置可观测性功能,帮助开发者快速构建和部署智能体。
201 15
Motia:程序员福音!AI智能体三语言混编,零基础秒级部署
|
2月前
|
数据采集 人工智能 大数据
演讲实录:中小企业如何快速构建AI应用?
AI时代飞速发展,大模型和AI的应用创新不断涌现,面对百花齐放的AI模型,阿里云计算平台大数据AI解决方案总监魏博文分享如何通过阿里云提供的大数据AI一体化平台,解决企业开发难、部署繁、成本高等一系列问题,让中小企业快速搭建AI应用。
|
2月前
|
存储 人工智能 自然语言处理
15.4K Star!Vercel官方出品,零基础构建企业级AI聊天机器人
"基于Next.js 14和AI SDK打造的Chat SDK,让开发者快速构建支持多模态交互、代码执行、文件共享的智能对话系统,5分钟完成全栈部署!" —— Vercel AI Chatbot项目核心宣言
138 5
|
3月前
|
人工智能 数据可视化 API
36.7K star!拖拽构建AI流程,这个开源LLM应用框架绝了!
`Flowise` 是一款革命性的低代码LLM应用构建工具,开发者通过可视化拖拽界面,就能快速搭建基于大语言模型的智能工作流。该项目在GitHub上线不到1年就斩获**36.7K星标**,被开发者誉为"AI时代的乐高积木"。
201 8
|
25天前
|
存储 人工智能 自然语言处理
构建智能AI记忆系统:多智能体系统记忆机制的设计与技术实现
本文探讨了多智能体系统中记忆机制的设计与实现,提出构建精细化记忆体系以模拟人类认知过程。文章分析了上下文窗口限制的技术挑战,并介绍了四种记忆类型:即时工作记忆、情节记忆、程序性记忆和语义知识系统。通过基于文件的工作上下文记忆、模型上下文协议的数据库集成以及RAG系统等技术方案,满足不同记忆需求。此外,高级技术如动态示例选择、记忆蒸馏和冲突解决机制进一步提升系统智能化水平。总结指出,这些技术推动智能体向更接近人类认知的复杂记忆处理机制发展,为人工智能开辟新路径。
110 5
构建智能AI记忆系统:多智能体系统记忆机制的设计与技术实现
|
1月前
|
人工智能 运维 安全
阿里云 Serverless 助力海牙湾构建弹性、高效、智能的 AI 数字化平台
海牙湾(G-Town)是一家以“供应链+场景+技术+AI”为核心驱动力的科技公司,致力于为各行业提供数字化转型解决方案。通过采用阿里云Serverless架构,解决了弹性能力不足、资源浪费与运维低效的问题。SAE全托管特性降低了技术复杂度,并计划进一步探索Serverless与AI结合,推动智能数字化发展。海牙湾业务覆盖金融、美妆、能源等领域,与多家知名企业建立战略合作,持续优化用户体验和供应链决策能力,保障信息安全并创造可量化的商业价值。未来,公司将深化云原生技术应用,助力更多行业实现高效数字化转型。
178 19
下一篇
oss创建bucket