OpenAI与法国和西班牙媒体巨头合作:利用内容进行训练AI

简介: 【2月更文挑战第26天】OpenAI与法国和西班牙媒体巨头合作:利用内容进行训练AI

微信图片_20240225082106.jpg
在当今信息爆炸的时代,人工智能技术的发展为新闻传播领域带来了前所未有的变革。最近,OpenAI宣布与法国的Le Monde和西班牙的Prisa Media两大媒体巨头达成合作,这一举措标志着AI技术在新闻内容分发和用户体验上的又一次重大突破。

Le Monde作为法国的权威新闻机构,一直以来都以其准确、经过验证的新闻报道而著称。其与OpenAI的合作,不仅为其庆祝成立80周年增添了光彩,更是在全球范围内扩大了其影响力。Le Monde自2010年起就开始了数字化转型,通过不断调整组织结构和运营方式,成功地将其新闻内容推向了更广泛的受众。到2024年,Le Monde已经拥有超过600,000名订阅者,每天吸引2.2M独立用户,每月页面浏览量超过632百万次,成为法国领先的新闻媒体。

Prisa Media,作为最大的西班牙语媒体集团,其业务范围覆盖西班牙、拉丁美洲和美国等核心市场。Prisa Media不仅在文字内容上有所建树,还在音频和视频领域取得了显著成绩。每月超过7百万的独立用户,16.5亿次的页面浏览量,以及9000万小时的音频总听时间和1.41亿次的视频观看量,都充分证明了Prisa Media在媒体行业中的强大影响力。

OpenAI与这两家媒体巨头的合作,意味着Le Monde和Prisa Media的新闻内容将被用于训练ChatGPT,这将极大地提升AI模型在理解和生成新闻内容方面的能力。通过精选新闻摘要和增强链接,ChatGPT用户将能够更便捷地获取新闻信息,同时也能够促进新闻内容的多元化和国际化。

然而,这一合作也引发了一些担忧。一方面,AI技术在处理新闻内容时可能会因为算法的偏差而导致信息的误读或误解。另一方面,随着AI在新闻产业中的作用日益增强,人类记者的角色和新闻的真实性可能会受到挑战。因此,如何确保AI技术在提高效率的同时,不损害新闻的质量和公信力,是业界需要认真思考的问题。

目录
相关文章
|
2月前
|
JSON 人工智能 数据格式
AI计算机视觉笔记二十六:YOLOV8自训练关键点检测
本文档详细记录了使用YOLOv8训练关键点检测模型的过程。首先通过清华源安装YOLOv8,并验证安装。接着通过示例权重文件与测试图片`bus.jpg`演示预测流程。为准备训练数据,文档介绍了如何使用`labelme`标注工具进行关键点标注,并提供了一个Python脚本`labelme2yolo.py`将标注结果从JSON格式转换为YOLO所需的TXT格式。随后,通过Jupyter Notebook可视化标注结果确保准确性。最后,文档展示了如何组织数据集目录结构,并提供了训练与测试代码示例,包括配置文件`smoke.yaml`及训练脚本`train.py`,帮助读者完成自定义模型的训练与评估。
|
14天前
|
人工智能 Cloud Native 数据管理
媒体声音|重磅升级,阿里云发布首个“Data+AI”驱动的一站式多模数据平台
在2024云栖大会上,阿里云瑶池数据库发布了首个一站式多模数据管理平台DMS:OneMeta+OneOps。该平台由Data+AI驱动,兼容40余种数据源,实现跨云数据库、数据仓库、数据湖的统一数据治理,帮助用户高效提取和分析元数据,提升业务决策效率10倍。DMS已服务超10万企业客户,降低数据管理成本高达90%。
|
1月前
|
Python 机器学习/深度学习 人工智能
手把手教你从零开始构建并训练你的第一个强化学习智能体:深入浅出Agent项目实战,带你体验编程与AI结合的乐趣
【10月更文挑战第1天】本文通过构建一个简单的强化学习环境,演示了如何创建和训练智能体以完成特定任务。我们使用Python、OpenAI Gym和PyTorch搭建了一个基础的智能体,使其学会在CartPole-v1环境中保持杆子不倒。文中详细介绍了环境设置、神经网络构建及训练过程。此实战案例有助于理解智能体的工作原理及基本训练方法,为更复杂应用奠定基础。首先需安装必要库: ```bash pip install gym torch ``` 接着定义环境并与之交互,实现智能体的训练。通过多个回合的试错学习,智能体逐步优化其策略。这一过程虽从基础做起,但为后续研究提供了良好起点。
111 4
手把手教你从零开始构建并训练你的第一个强化学习智能体:深入浅出Agent项目实战,带你体验编程与AI结合的乐趣
|
29天前
|
人工智能 自然语言处理 自动驾驶
【通义】AI视界|微软和 OpenAI 将向媒体提供1000万美元资助,推动其使用AI工具
本文概览了近期科技领域的五大热点事件,包括微软与OpenAI联手资助媒体使用AI工具、OpenAI任命前白宫官员为首任首席经济学家、特斯拉FSD系统遭调查、英伟达市值逼近全球第一、以及AMD新一代锐龙9000X3D系列处理器即将上市的消息。更多资讯,请访问通义官网。
|
2月前
|
人工智能 开发工具 计算机视觉
AI计算机视觉笔记三十:yolov8_obb旋转框训练
本文介绍了如何使用AUTODL环境搭建YOLOv8-obb的训练流程。首先创建虚拟环境并激活,然后通过指定清华源安装ultralytics库。接着下载YOLOv8源码,并使用指定命令开始训练,过程中可能会下载yolov8n.pt文件。训练完成后,可使用相应命令进行预测测试。
|
2月前
|
人工智能 PyTorch 算法框架/工具
AI计算机视觉笔记二十二:基于 LeNet5 的手写数字识别及训练
本文介绍了使用PyTorch复现LeNet5模型并检测手写数字的过程。通过搭建PyTorch环境、安装相关库和下载MNIST数据集,实现了模型训练与测试。训练过程涉及创建虚拟环境、安装PyTorch及依赖库、准备数据集,并编写训练代码。最终模型在测试集上的准确率达到0.986,满足预期要求。此项目为后续在RK3568平台上部署模型奠定了基础。
|
2月前
|
人工智能 测试技术 PyTorch
AI计算机视觉笔记二十四:YOLOP 训练+测试+模型评估
本文介绍了通过正点原子的ATK-3568了解并实现YOLOP(You Only Look Once for Panoptic Driving Perception)的过程,包括训练、测试、转换为ONNX格式及在ONNX Runtime上的部署。YOLOP由华中科技大学团队于2021年发布,可在Jetson TX2上达到23FPS,实现了目标检测、可行驶区域分割和车道线检测的多任务学习。文章详细记录了环境搭建、训练数据准备、模型转换和测试等步骤,并解决了ONNX转换过程中的问题。
|
2月前
|
存储 人工智能 数据可视化
AI计算机视觉笔记二十一:PaddleOCR训练自定义数据集
在完成PaddleOCR环境搭建与测试后,本文档详细介绍如何训练自定义的车牌检测模型。首先,在`PaddleOCR`目录下创建`train_data`文件夹存放数据集,并下载并解压缩车牌数据集。接着,复制并修改配置文件`ch_det_mv3_db_v2.0.yml`以适应训练需求,包括设置模型存储目录、训练可视化选项及数据集路径。随后,下载预训练权重文件并放置于`pretrain_models`目录下,以便进行预测与训练。最后,通过指定命令行参数执行训练、断点续训、测试及导出推理模型等操作。
|
2月前
|
机器学习/深度学习 人工智能 测试技术
AI计算机视觉笔记二十五:ResNet50训练部署教程
该项目旨在训练ResNet50模型并将其部署到RK3568开发板上。首先介绍了ResNet50网络,该网络由何恺明等人于2015年提出,解决了传统卷积神经网络中的退化问题。项目使用车辆分类数据集进行训练,并提供了数据集下载链接。环境搭建部分详细描述了虚拟环境的创建和所需库的安装。训练过程中,通过`train.py`脚本进行了15轮训练,并可视化了训练和测试结果。最后,项目提供了将模型转换为ONNX和PT格式的方法,以便在RK3568上部署。
|
2月前
|
人工智能 计算机视觉 Python
AI计算机视觉笔记十九:Swin Transformer训练
本文介绍了使用自定义数据集训练和测试目标检测模型的步骤。首先,通过安装并使用标注工具labelme准备数据集;接着修改配置文件以适应自定义类别,并调整预训练模型;然后解决训练过程中遇到的依赖冲突问题并完成模型训练;最后利用测试命令验证模型效果。文中提供了具体命令及文件修改指导。