2023年度AI盘点 AIGC|AGI|ChatGPT|人工智能大模型

简介: 2023年度AI盘点 AIGC|AGI|ChatGPT|人工智能大模型

2023年是人工智能大语言模型大爆发的一年,一些概念和英文缩写也在这一年里集中出现,很容易混淆,甚至把人搞懵。

LLM:Large Language Model,即大语言模型,旨在理解和生成人类语言。LLM的特点是规模庞大,包含成百、上千亿的参数,可以捕捉语言的复杂模式,包括句法、语义和一些上下文信息,从而生成连贯的、有意义的文本。ChatGPT、GPT-4、BERT、文心一言等都是典型的大型语言模型。


GPT:Generative Pre-training Transformer,是OpenAI开发的一种基于Transformer的大规模自然语言生成模型。


AIGC:Artificial Intelligence Generated Content,即AI生成内容。指的是利用AI技术生成的内容,比如AI写文章、画画甚至做视频等等。


AGI:Artificial General Intelligence,即通用人工智能。AGI的目标是创造一个能像人类一样思考、学习、执行多种任务的系统,成为全能的“超级大脑”,未来可能在任何领域都超越人类。


推荐语:中国IT领军者陈斌新作,详解ChatGPT在软件研发全流程的应用,大幅提升研发效率,塑造工程师AI时代竞争优势。

import openai
# 设置OpenAI API密钥
openai.api_key = 'YOUR_API_KEY'
# 定义对话的起始信息
conversation_start = "User: Hello AI!\nAI: Hi, how can I help you today?"
# 发送请求并获取AI的回复
def get_ai_response(message):
    response = openai.Completion.create(
        engine='text-davinci-003',
        prompt=conversation_start + message,
        max_tokens=50,
        temperature=0.7,
        n = 1,
        stop=None,
        temperature = 0.6 
    )
    return response.choices[0].text.strip()
# 与AI交互
while True:
    user_input = input("User: ")
    # 添加用户输入到对话中
    conversation_start += '\nUser: ' + user_input
    # 获取AI回复
    ai_response = get_ai_response(conversation_start)
    # 添加AI回复到对话中
    conversation_start += '\nAI: ' + ai_response
    print("AI:", ai_response)

《神经网络与深度学习:案例与实践》作为邱锡鹏老师出品的《神经网络与深度学习》配套案例,与《神经网络与深度学习》深度融合,从实践角度诠释原书理论内容。复旦大学邱锡鹏教授、百度飞桨研发团队联袂奉献。

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
# 定义神经网络模型
class NeuralNet(nn.Module):
    def __init__(self):
        super(NeuralNet, self).__init__()
        self.fc1 = nn.Linear(784, 128)  # 输入层到隐藏层
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(128, 10)   # 隐藏层到输出层
    def forward(self, x):
        x = x.view(x.size(0), -1)  # 将图像扁平化(将图像转换成一维向量)
        x = self.fc1(x)
        x = self.relu(x)
        x = self.fc2(x)
        return x
# 定义超参数
learning_rate = 0.001
batch_size = 100
num_epochs = 10
# 加载并预处理数据
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5,), (0.5,))
])
train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transform, download=True)
test_dataset = torchvision.datasets.MNIST(root='./data', train=False, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)


相关文章
|
26天前
|
机器学习/深度学习 人工智能 运维
【人工智能技术专题】「入门到精通系列教程」打好AI基础带你进军人工智能领域的全流程技术体系(机器学习知识导论)(二)
【人工智能技术专题】「入门到精通系列教程」打好AI基础带你进军人工智能领域的全流程技术体系(机器学习知识导论)
59 1
|
26天前
|
机器学习/深度学习 人工智能 自然语言处理
【人工智能技术专题】「入门到精通系列教程」打好AI基础带你进军人工智能领域的全流程技术体系(机器学习知识导论)(一)
【人工智能技术专题】「入门到精通系列教程」打好AI基础带你进军人工智能领域的全流程技术体系(机器学习知识导论)
70 1
|
12天前
|
机器学习/深度学习 人工智能 达摩院
52个AIGC视频生成算法模型介绍(上)
52个AIGC视频生成算法模型介绍(上)
38 3
|
13天前
|
机器学习/深度学习 人工智能 自然语言处理
|
13天前
|
机器学习/深度学习 数据采集 人工智能
|
14天前
|
机器学习/深度学习 数据采集 人工智能
|
14天前
|
机器学习/深度学习 人工智能 算法
|
14天前
|
机器学习/深度学习 人工智能 算法
|
17天前
|
机器学习/深度学习 人工智能 算法
AI日报:人工智能使用和评估的关键任务
AI日报:人工智能使用和评估的关键任务
21 0
|
17天前
|
人工智能 安全 芯片
AI日报:扎克伯格瞄准AGI通用人工智能
AI日报:扎克伯格瞄准AGI通用人工智能
29 1

热门文章

最新文章