中国信通院联合金橙果科技等十七家单位发起人工智能大模型安全基准测试

简介: 2024年2月20日下午,AIIA“SafetyAI Bench”(人工智能大模型安全基准测试)线上研讨会成功举办。来自中国信息通信研究院(以下简称“中国信通院”)、厦门大学、北京大学、北京交通大学、360、百度、蚂蚁集团、VIVO、西门​子、小鹏汽车、马上消费、浪潮科技、海信视像、交通银行、商汤科技、邮储银行、普华永道、科大讯飞、金橙果科技、万商天勤律所、中兴通讯、博特智能、开源网安、云天励飞等单位40余位科研机构专家及企业代表参加了本次会议。

2024年2月20日下午,AIIA“SafetyAI Bench”(人工智能大模型安全基准测试)线上研讨会成功举办。来自中国信息通信研究院(以下简称“中国信通院”)、厦门大学、北京大学、北京交通大学、360、百度、蚂蚁集团、VIVO、西门子、小鹏汽车、马上消费、浪潮科技、海信视像、交通银行、商汤科技、邮储银行、普华永道、科大讯飞、金橙果科技、万商天勤律所、中兴通讯、博特智能、开源网安、云天励飞等单位40余位科研机构专家及企业代表参加了本次会议。

中国信通院人工智能研究中心、AIIA 安全治理委员会 AI原生安全工作组组长张蔚敏介绍了AIIA“SafetyAI Bench”的工作背景。为了进一步推动大模型的安全部署应用,中国信通院联合17家单位发起大模型安全基准测试SafetyAI Bench,秉持公平公正、产业应用和场景导向的原则,目标建立业内权威大模型安全中文基准测试体系。以提高内容安全、数据安全和科技伦理等安全能力为目标,覆盖价值观正确、合法合规、隐私保护、文明健康等二十个维度的中文评测数据集。帮助大模型技术提供方提升模型安全风险防范能力,为大模型研发和落地保驾护航。

中国信通院人工智能研究中心安全与元宇宙部白入文博士介绍了“大模型评测系统”建设工作,系统将依托工信部大模型公共服务平台形成大模型评测执行的“硬工具”,为通用大模型、行业大模型、 大模型应用产品等提供一站式评测服务。一是以中立身份形成全维度、可拓展、公开、公正、公平的大模型评测能力,二是围绕产业实际应用需求开展动态评测服务,三是提供包括模型选型与供需对接在内的应用落地配套服务。

金橙果科技是人工智能中台技术研发的优秀团队,其产品AZSYS系统可以有效提升对异构数据的处理能力,帮助大模型与应用场景深度融合。搭载了该系统的伙伴AI在深度学习、自然语言理解、AI模型开发、角色构建与训练等领域均有非常出色的表现。金橙果科技CEO宋佰轩表示,我们正处于新的科技革命爆发前夕,AI不仅会改变我们思考和解决问题的方式,更会为人类社会生产生活方式激活无限新可能。未来AI将无处不在,随之而来的AI安全问题将是我们面临的巨大挑战,我们愿意携手更多同道者,一起推动行业安全标准的制定和实施,共建美好AI未来。



http://www.cnaifm.com/rgzn/3ddy/2024-02-22/12252.html

https://www.xinpin1688.com/article-19250-1.html

https://www.xinpin1688.com/article-19249-1.html

https://www.xinpin1688.com/article-19244-1.html

https://www.xinpin1688.com/article-19243-1.html

https://www.xinpin1688.com/article-19242-1.html

相关文章
|
22天前
|
人工智能 安全 算法
上交大、上海人工智能实验室开源首个多轮安全对齐数据集 SafeMTData
最近,以 OpenAI o1 为代表的 AI 大模型的推理能力得到了极大提升,在代码、数学的评估上取得了令人惊讶的效果。OpenAI 声称,推理可以让模型更好的遵守安全政策,是提升模型安全的新路径。
|
20天前
|
机器学习/深度学习 人工智能 机器人
推荐一些关于将图形学先验知识融入人工智能模型的研究论文
推荐一些关于将图形学先验知识融入人工智能模型的研究论文
|
20天前
|
机器学习/深度学习 人工智能 图形学
如何将图形学先验知识融入到人工智能模型中?
如何将图形学先验知识融入到人工智能模型中?
|
16天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
51 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
16天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
59 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
29天前
|
编解码 安全 Linux
网络空间安全之一个WH的超前沿全栈技术深入学习之路(10-2):保姆级别教会你如何搭建白帽黑客渗透测试系统环境Kali——Liinux-Debian:就怕你学成黑客啦!)作者——LJS
保姆级别教会你如何搭建白帽黑客渗透测试系统环境Kali以及常见的报错及对应解决方案、常用Kali功能简便化以及详解如何具体实现
|
1月前
|
编解码 人工智能 自然语言处理
迈向多语言医疗大模型:大规模预训练语料、开源模型与全面基准测试
【10月更文挑战第23天】Oryx 是一种新型多模态架构,能够灵活处理各种分辨率的图像和视频数据,无需标准化。其核心创新包括任意分辨率编码和动态压缩器模块,适用于从微小图标到长时间视频的多种应用场景。Oryx 在长上下文检索和空间感知数据方面表现出色,并且已开源,为多模态研究提供了强大工具。然而,选择合适的分辨率和压缩率仍需谨慎,以平衡处理效率和识别精度。论文地址:https://www.nature.com/articles/s41467-024-52417-z
44 2
|
1月前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
74 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
15天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与模型知识库在移动医疗产品中的落地应用
在现代医疗体系中,通义千问大模型与MaxKB知识库的结合,为医生和患者提供了前所未有的支持与便利。该系统通过实时问答、临床决策辅助、个性化学习和患者教育等功能,显著提升了诊疗效率和患者满意度。实际应用如乐问医学APP展示了其强大优势,但数据隐私和安全问题仍需关注。
42 0
|
2月前
|
存储 机器学习/深度学习 人工智能
探索未来科技:人工智能与区块链的融合之路
【10月更文挑战第14天】探索未来科技:人工智能与区块链的融合之路
49 1