《计算机视觉:模型、学习和推理》一3.2 贝塔分布-阿里云开发者社区

开发者社区> 华章出版社> 正文

《计算机视觉:模型、学习和推理》一3.2 贝塔分布

简介: 本节书摘来华章计算机《计算机视觉:模型、学习和推理》一书中的第3章 ,第3.2节, [英]西蒙J. D. 普林斯(Simon J. D. Prince)著苗启广 刘凯 孔韦韦 许鹏飞 译 译更多章节内容可以访问云栖社区“华章计算机”公众号查看。

3.2 贝塔分布

贝塔分布(图3-2)是由单变量λ定义的连续分布,这里λ=[0,1]。因此,它适合表示伯努利分布中参数λ的不确定性。
如图3-2所示,贝塔分布有两个参数(α,β)∈[0,∞],两个参数均取正值并且都影响曲线的形状。在数学上,贝塔分布的形式如下:
2017_09_19_120050
其中,Γ[]是伽马函数,简言之,它缩写为:
2017_09_19_120502
2017_09_19_120536
图3-2 贝塔分布。贝塔分布值域在[0,1]之间,有参数(α,β),参数相对值决定预期值,所以E[λ]=α/(α+β)(括号内的数值显示每条曲线中的α、β)。随着(α,β)绝对值的增加,E[λ]两侧的分布更加集中,a)每条曲线中,E[λ]=0.5,分布的集中程度不同。b)E[λ]=0.25。c)E[λ]=0.75

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

分享:

华章出版社

官方博客
官网链接