利用大数据和分析来发展业务,您准备好了吗?

本文涉及的产品
数据管理 DMS,安全协同 3个实例 3个月
推荐场景:
学生管理系统数据库
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

许多企业已经发现,他们的内部数据访问和整合系统面临基于云的信息和大数据所带来的新挑战。如今的企业通常使用多个数据管理平台来完成内部分析和运营工作。由于平台增加和数据分散在不同的地理位置,许多企业发现数据虚拟化对其成功至关重要。数据虚拟化使企业能够提供远程数据访问,避免以物理方式转移数据,从而助力他们打造更加灵活敏捷的 IT 基础架构,节省时间和资金,改进复杂数据环境的管理。

 

利用大数据和分析来发展业务,您准备好了吗?

广泛使用的标准数据管理方法,通常也被称为“提取、传输和加载”(ETL)流程。

数 据整合是拥有多平台的企业所面临的另一个挑战。与数据联合不同,数据整合并不尝试给数据强加一种单一的数据模式(异构数据)。数据整合也支持将交易数据更 新回写到源系统。为了解决源和消费格式及语义的差异,企业采用了不同的提取和转换方法。专事于业务情报、面向服务的架构数据服务、云计算、企业搜索和数据管理的企业普遍采用这种方法。

数据虚拟化助您加速实现业务成效和成本节省

经常利用数据分析来帮助制定重要决策的任何行业或企业都能从数据虚拟化中获益。利用数据虚拟化潜力最大的一些领域包括银行、保险、制造、医疗、医药以及采矿和资源行业。

有一个实际例子可以证明数据虚拟化的好处。这是一家致力于为客户探索适当产品与服务组合的全球金融服务领导企业。该公司提供众多事务方面的咨询服务,包括投资组合经理人变更、投资管理和固定缴款计划定制基金。该公司首先指导客户完成战略规划和实施,然后帮助客户评估成效。

为了完成这一过程,该公司的投资管理与 IT 调研团队为不同部门的300多名员工提供数据和信息。要想访问数据,这些员工必须精通调研数据库(其中包含几个不同格式的数十个不同数据源)以及 Transact-SQL

 

利用大数据和分析来发展业务,您准备好了吗?

思科数据虚拟化方法

数据虚拟化的实际投资回报

鉴于可用的资源有限,该公司的开发人员利用现成的结构化查询语言(SQL)服务器来尽可能高效地帮助其300多名员工。虽然这一设置具有实用性,但也极其耗费资源,并且维护成本高昂。因此,该公司设法加快开发速度和确保快速的关键调研数据访问。数据虚拟化为该公司提供了一个简单、统一和自适应的解决方案。

在 采用数据虚拟化之后,该公司的整体业绩和上市速度大幅提高,同时,设置和持续维护成本降低。除了生产力提高之外,这些变化还使该公司每年节省了 200-400万美元。通过加快重要业务信息的访问速度,数据虚拟化也使该公司的收入上升了1.5%。例如,基金管理人的6个月投资回报率(ROI)提高 了150%,开发时间缩短了60%。同期,该公司一项数十万美元预算的见效速度提高了250%。

您是否制定了数据虚拟化计划以抓住商机?

思 科数据虚拟化是一种数据管理方法,可使企业快速轻松地检索和操纵数据。您不必了解数据的任何技术细节,例如数据格式或物理位置。与采用传统 ETL 流程不同,数据的位置不变。数据虚拟化可让您实时访问数据的源系统,从而降低了数据出错的风险,并且无需转移可能从未使用过的数据。

数据呈爆炸性增长,但许多企业仍然采用传统方式来存储和处理数据。新型数据十分分散,难以访问,并且通常必须实时进行分析。因此,数据虚拟化空前重要。最终,为 IoE 带来价值的将是大数据与分析所提供的情报。


本文作者:佚名

来源:51CTO

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
2月前
|
存储 机器学习/深度学习 SQL
大数据处理与分析技术
大数据处理与分析技术
143 2
|
3月前
|
SQL 消息中间件 分布式计算
大数据-124 - Flink State 01篇 状态原理和原理剖析:状态类型 执行分析
大数据-124 - Flink State 01篇 状态原理和原理剖析:状态类型 执行分析
91 5
|
15天前
|
机器学习/深度学习 数据可视化 大数据
机器学习与大数据分析的结合:智能决策的新引擎
机器学习与大数据分析的结合:智能决策的新引擎
100 15
|
21天前
|
SQL 分布式计算 DataWorks
DataWorks产品测评|基于DataWorks和MaxCompute产品组合实现用户画像分析
本文介绍了如何使用DataWorks和MaxCompute产品组合实现用户画像分析。首先,通过阿里云官网开通DataWorks服务并创建资源组,接着创建MaxCompute项目和数据源。随后,利用DataWorks的数据集成和数据开发模块,将业务数据同步至MaxCompute,并通过ODPS SQL完成用户画像的数据加工,最终将结果写入`ads_user_info_1d`表。文章详细记录了每一步的操作过程,包括任务开发、运行、运维操作和资源释放,帮助读者顺利完成用户画像分析。此外,还指出了文档中的一些不一致之处,并提供了相应的解决方法。
|
20天前
|
分布式计算 DataWorks 搜索推荐
用户画像分析(MaxCompute简化版)
通过本教程,您可以了解如何使用DataWorks和MaxCompute产品组合进行数仓开发与分析,并通过案例体验DataWorks数据集成、数据开发和运维中心模块的相关能力。
|
2月前
|
机器学习/深度学习 存储 大数据
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系,保留最大方差信息,实现数据压缩、去噪及可视化。本文详解PCA原理、步骤及其Python实现,探讨其在图像压缩、特征提取等领域的应用,并指出使用时的注意事项,旨在帮助读者掌握这一强大工具。
94 4
|
2月前
|
关系型数据库 分布式数据库 数据库
PolarDB 以其出色的性能和可扩展性,成为大数据分析的重要工具
在数字化时代,企业面对海量数据的挑战,PolarDB 以其出色的性能和可扩展性,成为大数据分析的重要工具。它不仅支持高速数据读写,还通过数据分区、索引优化等策略提升分析效率,适用于电商、金融等多个行业,助力企业精准决策。
37 4
|
2月前
|
机器学习/深度学习 分布式计算 算法
【大数据分析&机器学习】分布式机器学习
本文主要介绍分布式机器学习基础知识,并介绍主流的分布式机器学习框架,结合实例介绍一些机器学习算法。
248 5
|
2月前
|
存储 监控 数据挖掘
【Clikhouse 探秘】ClickHouse 物化视图:加速大数据分析的新利器
ClickHouse 的物化视图是一种特殊表,通过预先计算并存储查询结果,显著提高查询性能,减少资源消耗,适用于实时报表、日志分析、用户行为分析、金融数据分析和物联网数据分析等场景。物化视图的创建、数据插入、更新和一致性保证通过事务机制实现。
210 14
|
2月前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
169 2